
J2UL-2752-02PEZ0(00)
September 2022

Linux

FUJITSU Software
Enterprise Postgres 14 SP1

Application Development Guide

Preface

Purpose of this document

This is a guide for the developers of FUJITSU Enterprise Postgres applications.

Intended readers

This document is intended for developers of applications that use FUJITSU Enterprise Postgres. Of the interfaces provided by FUJITSU
Enterprise Postgres, this guide describes the PostgreSQL extended interface.

Readers of this document are also assumed to have general knowledge of:

- PostgreSQL

- SQL

- Linux

Structure of this document

This document is structured as follows:

Chapter 1 Overview of the Application Development Function

Provides an overview of FUJITSU Enterprise Postgres application development.

Chapter 2 JDBC Driver

Explains how to use JDBC drivers.

Chapter 3 ODBC Driver

Explains how to use ODBC drivers.

Chapter 4 C Library (libpq)

Explains how to use C applications.

Chapter 5 Embedded SQL in C

Explains how to use embedded SQL in C.

Chapter 6 SQL References

Explains the SQL statements which were extended in FUJITSU Enterprise Postgres development.

Chapter 7 Compatibility with Oracle Databases

Explains features that are compatible with Oracle databases.

Chapter 8 Application Connection Switch Feature

Explains the application connection switch feature.

Chapter 9 Performance Tuning

Explains how to tune application performance.

Chapter 10 Scan Using a Vertical Clustered Index (VCI)

Explains how to perform scan using a Vertical Clustered Index (VCI).

Appendix A Precautions when Developing Applications

Provides some points to note about application development.

Appendix B Conversion Procedures Required due to Differences from Oracle Database

Explains how to convert from an Oracle database to FUJITSU Enterprise Postgres, within the scope noted in "Compatibility with Oracle
Databases" from the following perspectives.

- i -

Appendix C Tables Used by the Features Compatible with Oracle Databases

Explains the tables used by the features compatible with Oracle databases.

Appendix D Quantitative Limits

This appendix explains limitations.

Appendix E Reference

Provides a reference for each interface.

Export restrictions

Exportation/release of this document may require necessary procedures in accordance with the regulations of your resident country and/or
US export control laws.

Issue date and version

Edition 2.0: September 2022

Edition 1.0: April 2022

Copyright

Copyright 2022 FUJITSU LIMITED

- ii -

Contents
Chapter 1 Overview of the Application Development Function.. 1

1.1 Support for National Characters.. 2
1.1.1 Literal..2
1.1.2 Data Type..2
1.1.3 Functions and Operator...3

1.2 Compatibility with Oracle Database..3
1.3 Application Connection Switch Feature.. 3

1.3.1 Integration with Database Multiplexing... 3
1.4 Notes on Application Compatibility.. 4

1.4.1 Checking Execution Results... 4
1.4.2 Referencing System Catalogs... 4
1.4.3 Using Functions.. 5

Chapter 2 JDBC Driver...6
2.1 Development Environment.. 6

2.1.1 Combining with JDK or JRE.. 6
2.2 Setup.. 6

2.2.1 Environment Settings..6
2.2.2 Message Language and Encoding System Used by Applications Settings.. 6
2.2.3 Settings for Encrypting Communication Data..7

2.3 Connecting to the Database... 7
2.3.1 Using the DriverManager Class..8
2.3.2 Using the PGConnectionPoolDataSource Class...8
2.3.3 Using the PGXADataSource Class...9

2.4 Application Development.. 10
2.4.1 Relationship between the Application Data Types and Database Data Types... 10
2.4.2 Statement Caching Feature... 12
2.4.3 Creating Applications while in Database Multiplexing Mode... 12

2.4.3.1 Errors when an Application Connection Switch Occurs and Corresponding Actions.. 12

Chapter 3 ODBC Driver..13
3.1 Development Environment.. 13
3.2 Setup.. 13

3.2.1 Registering ODBC Drivers...13
3.2.2 Registering ODBC Data Sources..15
3.2.3 Message Language and Encoding System Used by Applications Settings.. 17

3.3 Connecting to the Database... 18
3.4 Application Development.. 18

3.4.1 Compiling Applications..18
3.4.2 Creating Applications While in Database Multiplexing Mode.. 18

3.4.2.1 Errors when an Application Connection Switch Occurs and Corresponding Actions.. 19

Chapter 4 C Library (libpq)... 20
4.1 Development Environment.. 20
4.2 Setup.. 20

4.2.1 Environment Settings..20
4.2.2 Message Language and Encoding System Used by Applications Settings.. 20
4.2.3 Settings for Encrypting Communication Data..21

4.3 Connecting with the Database... 22
4.4 Application Development.. 22

4.4.1 Compiling Applications..22
4.4.2 Creating Applications while in Database Multiplexing Mode... 22

4.4.2.1 Errors when an Application Connection Switch Occurs and Corresponding Actions.. 23

Chapter 5 Embedded SQL in C..24
5.1 Development Environment.. 24

- iii -

5.2 Setup.. 24
5.2.1 Environment Settings..24
5.2.2 Message Language and Encoding System Used by Applications Settings.. 24
5.2.3 Settings for Encrypting Communication Data..24

5.3 Connecting with the Database... 24
5.4 Application Development.. 26

5.4.1 Support for National Character Data Types... 27
5.4.2 Compiling Applications..27
5.4.3 Bulk INSERT..28
5.4.4 Creating Applications while in Database Multiplexing Mode... 32

5.4.4.1 Errors when an Application Connection Switch Occurs and Corresponding Actions.. 32
5.4.5 Notes... 32

Chapter 6 SQL References.. 33
6.1 Expanded Trigger Definition Feature.. 33

6.1.1 CREATE TRIGGER...33

Chapter 7 Compatibility with Oracle Databases...35
7.1 Overview..35
7.2 Precautions when Using the Features Compatible with Oracle Databases... 35

7.2.1 Notes on SUBSTR.. 35
7.2.2 Notes when Integrating with the Interface for Application Development..36

7.3 Queries... 36
7.3.1 Outer Join Operator (+)...36
7.3.2 DUAL Table... 38

7.4 SQL Function Reference... 38
7.4.1 DECODE.. 39
7.4.2 SUBSTR... 40
7.4.3 NVL.. 42

7.5 Package Reference...42
7.5.1 DBMS_SQL..43

7.5.1.1 Description...45
7.5.1.2 Example... 48

Chapter 8 Application Connection Switch Feature...51
8.1 Connection Information for the Application Connection Switch Feature...51
8.2 Using the Application Connection Switch Feature..52

8.2.1 Using the JDBC Driver...52
8.2.2 Using the ODBC Driver... 53
8.2.3 Using a Connection Service File.. 55
8.2.4 Using the C Library (libpq).. 56
8.2.5 Using Embedded SQL.. 57
8.2.6 Using the psql Command..59

Chapter 9 Performance Tuning.. 61
9.1 Enhanced Query Plan Stability.. 61

9.1.1 Optimizer Hints...61
9.1.2 Locked Statistics... 63

Chapter 10 Scan Using a Vertical Clustered Index (VCI)...67
10.1 Operating Conditions...67
10.2 Usage... 68

10.2.1 Designing.. 68
10.2.2 Checking... 69
10.2.3 Evaluating... 70

10.3 Usage Notes... 70

Appendix A Precautions when Developing Applications.. 73
A.1 Precautions when Using Functions and Operators... 73

- iv -

A.1.1 General rules of Functions and Operators... 73
A.1.2 Errors when Developing Applications that Use Functions and/or Operators..73

A.2 Notes when Using Temporary Tables...74
A.3 Implicit Data Type Conversions... 74

A.3.1 Function Argument.. 76
A.3.2 Operators..76
A.3.3 Storing Values..77

A.4 Notes on Using Index..77
A.4.1 SP-GiST Index... 77

A.5 Notes on Using Multibyte Characters in Definition Names... 77

Appendix B Conversion Procedures Required due to Differences from Oracle Database...79
B.1 Outer Join Operator (Perform Outer Join).. 79

B.1.1 Comparing with the ^= Comparison Operator...79
B.2 DECODE (Compare Values and Return Corresponding Results)..80

B.2.1 Comparing Numeric Data of Character String Types and Numeric Characters..80
B.2.2 Obtaining Comparison Result from more than 50 Conditional Expressions...80
B.2.3 Obtaining Comparison Result from Values with Different Data Types.. 81

B.3 SUBSTR (Extract a String of the Specified Length from Another String)...82
B.3.1 Specifying a Value Expression with a Data Type Different from the One that can be Specified for Function Arguments......82
B.3.2 Extracting a String with the Specified Format from a Datetime Type Value..83
B.3.3 Concatenating a String Value with a NULL value.. 83

B.4 NVL (Replace NULL).. 84
B.4.1 Obtaining Result from Arguments with Different Data Types..84
B.4.2 Operating on Datetime/Numeric, Including Adding Number of Days to a Particular Day...85
B.4.3 Calculating INTERVAL Values, Including Adding Periods to a Date... 85

B.5 DBMS_OUTPUT (Output Messages).. 86
B.5.1 Outputting Messages Such As Process Progress Status...86
B.5.2 Receiving a Return Value from a Procedure (PL/SQL) Block (For GET_LINES)...88
B.5.3 Receiving a Return Value from a Procedure (PL/SQL) Block (For GET_LINE)...90

B.6 UTL_FILE (Perform File Operation)..91
B.6.1 Registering a Directory to Load and Write Text Files...91
B.6.2 Checking File Information... 92
B.6.3 Copying Files... 96
B.6.4 Moving/Renaming Files...97

B.7 DBMS_SQL (Execute Dynamic SQL)... 98
B.7.1 Searching Using a Cursor...98

Appendix C Tables Used by the Features Compatible with Oracle Databases... 103
C.1 UTL_FILE.UTL_FILE_DIR.. 103

Appendix D Quantitative Limits.. 104

Appendix E Reference..109
E.1 JDBC Driver..109
E.2 ODBC Driver.. 109

E.2.1 List of Supported APIs... 109
E.3 C Library (libpq)... 112
E.4 Embedded SQL in C..112

Index...113

- v -

Chapter 1 Overview of the Application Development
Function

The interface for application development provided by FUJITSU Enterprise Postgres is perfectly compatible with PostgreSQL.

Along with the PostgreSQL interface, FUJITSU Enterprise Postgres also provides the following extended interfaces:

- Support for National Characters

In order to secure portability from mainframes and databases of other companies, FUJITSU Enterprise Postgres provides data types that
support national characters. The national characters are usable from the client application languages.

Refer to "1.1 Support for National Characters" for details.

- Compatibility with Oracle Databases

Compatibility with Oracle databases is offered. Use of the compatible features means that the revisions to existing applications can be
isolated, and migration to open interfaces is made simpler.

Refer to "1.2 Compatibility with Oracle Database" for details.

- Application connection switch feature

The application connection switch feature is provided to enable automatic connection to the target server when there are multiple
servers with redundant configurations.

Refer to "1.3 Application Connection Switch Feature" for details.

- Performance tuning

The following features are provided to control SQL statement query plans:

- Optimizer hints

- Locked statistics

Refer to "9.1 Enhanced Query Plan Stability" for details.

- Scanning using a Vertical Clustered Index (VCI)

Scans becomes faster during aggregation of many rows by providing the features below:

- Vertical clustered index (VCI)

- In-memory data

Refer to "Chapter 10 Scan Using a Vertical Clustered Index (VCI)" for details.

- 1 -

1.1 Support for National Characters
NCHAR type is provided as the data type to deal with national characters.

 Point

- NCHAR can only be used when the character set of the database is UTF-8.

- NCHAR can be used in the places where CHAR can be used (function arguments, etc.).

- For applications handling NCHAR type data in the database, the data format is the same as CHAR type. Therefore, applications
handling data in NCHAR type columns can also be used to handle data stored in CHAR type columns.

 Note

Note the following in order to cast NCHAR type data as CHAR type.

- When comparing NCHAR type data where the length differs, ASCII spaces are used to fill in the length of the shorter NCHAR type
data so that it can be processed as CHAR type data.

- Depending on the character set, the data size may increase by between 1.5 and 2 times.

- Use the AS clause to specify "varchar" as the column alias.

1.1.1 Literal
Syntax

{ N | n }'[national character [...]]'

General rules

National character string literals consist of an 'N' or 'n', and the national character is enclosed in single quotation marks ('). Example:
N'ABCDEF'

The data type is national character string type.

1.1.2 Data Type
Syntax

{ NATIONAL CHARACTER | NATIONAL CHAR | NCHAR } [VARYING][(length)]

The data type of the NCHAR type column is as follows:

Data type specification format Explanation

NATIONAL CHARACTER(n)

NATIONAL CHAR(n)

NCHAR(n)

National character string with a fixed length of n characters

This will be the same as (1) if (n) is omitted.

n is a whole number larger than 0.

NATIONAL CHARACTER VARYING(n)

NATIONAL CHAR VARYING(n)

NCHAR VARYING(n)

National character string with a variable length with a maximum of n
characters

Any length of national character string can be accepted when this is
omitted.

- 2 -

Data type specification format Explanation

n is a whole number larger than 0.

General rules

NCHAR is the national character string type data type. The length is the number of characters.

The length of the national character string type is as follows:

- When VARYING is not specified, the length of national character strings is fixed and will be the specified length.

- When VARYING is specified, the length of national character strings will be variable.
In this case, the lower limit will be 0 and the upper limit will be the value specified for length.

- NATIONAL CHARACTER, NATIONAL CHAR, and NCHAR each have the same meaning.

When the national character string to be stored is shorter than the declared upper limit, the NCHAR value is filled with spaces, whereas
NCHAR VARYING is stored as is.

The upper limit for character storage is approximately 1GB.

1.1.3 Functions and Operator
Comparison operator

When a NCHAR type or NCHAR VARYING type is specified in a comparison operator, comparison is only possible between NCHAR
types or NCHAR VARYING types.

String functions and operators

All of the string functions and operators that can be specified by a CHAR type can also be specified by a NCHAR type. The behavior
of these string functions and operators is also the same as with CHAR type.

Pattern matching (LIKE, SIMILAR TO regular expression, POSIX regular expression)

The patterns specified when pattern matching with NCHAR types and NCHAR VARYING types specify the percent sign (%) and the
underline (_).

The underline (_) means a match with one national character. The percent sign (%) means a match with any number of national
characters 0 or over.

1.2 Compatibility with Oracle Database
The following features have been extended in order to enhance compatibility with Oracle databases:

- Query (external join operator (+), DUAL table)

- Function (DECODE, SUBSTR, NVL)

- Built-in package (DBMS_OUTPUT, UTL_FILE, DBMS_SQL)

Refer to "Chapter 7 Compatibility with Oracle Databases" for information on the features compatible with Oracle databases.

1.3 Application Connection Switch Feature
The application connection switch feature enables automatic connection to the target server when there are multiple servers with redundant
configurations.

Refer to " Chapter 8 Application Connection Switch Feature " for information on the application connection switch feature.

1.3.1 Integration with Database Multiplexing
The application connection switch feature is provided to enable automatic connection to the appropriate server when there are multiple
servers with redundant configurations.

- 3 -

 See

Refer to the Cluster Operation Guide (Database Multiplexing) for information on database multiplexing.

1.4 Notes on Application Compatibility
FUJITSU Enterprise Postgres upgrades contain feature improvements and enhancements that may affect the applications.

Accordingly, note the points below when developing applications, to ensure compatibility after upgrade.

- Checking execution results

- Referencing system catalogs

- Using functions

1.4.1 Checking Execution Results
Refer to SQLSTATE output in messages to check the SQL statements used in applications and the execution results of commands used
during development.

 See

Refer to Messages for information on the message content and number.

Refer to "PostgreSQL Error Codes" under "Appendixes" in the PostgreSQL Documentation for information on SQLSTATE.

1.4.2 Referencing System Catalogs
System catalogs can be used to obtain information about the FUJITSU Enterprise Postgres system and database objects.

However, system catalogs may change when the FUJITSU Enterprise Postgres version is upgraded. Also, there are many system catalogs
that return information that is inherent to FUJITSU Enterprise Postgres.

Accordingly, reference the information schema defined in standard SQL (information_schema) wherever possible. Note also that queries
specifying "*" in the selection list must be avoided to prevent columns being added.

 See

Refer to "The Information Schema" under "Client Interfaces" in the PostgreSQL Documentation for details.

The system catalog must be referenced to obtain information not found in the information schema. Instead of directly referencing the system
catalog in the application, define a view for that purpose. Note, however, that when defining the view, the column name must be clearly
specified after the view name.

An example of defining and using a view is shown below.

 Example

CREATE VIEW my_tablespace_view(spcname) AS SELECT spcname FROM pg_tablespace;

SELECT * FROM my_tablespace_view V1, pg_tables T1 WHERE V1.spcname = T1.tablespace;

If changes are made to a system catalog, the user will be able to take action by simply making changes to the view, without the need to make
changes to the application.

The following shows an example of taking action by redefining a view as if no changes were made.

The pg_tablespace system catalog is redefined in response to the column name being changed from spcname to spacename.

- 4 -

 Example

DROP VIEW my_tablespace_view;

CREATE VIEW my_tablespace_view(spcname) AS SELECT spacename FROM pg_tablespace;

1.4.3 Using Functions
The default functions provided with FUJITSU Enterprise Postgres enable a variety of operations and manipulations to be performed, and
information to be obtained, using SQL statements.

However, it is possible that internal FUJITSU Enterprise Postgres functions, such as those relating to statistical information or for obtaining
system-related information, may change as FUJITSU Enterprise Postgres versions are upgraded.

Accordingly, when using these functions, define them as new functions and then use the newly-defined functions in the applications.

An example of defining and using a function is shown below.

 Example

CREATE FUNCTION my_func(relid regclass) RETURNS bigint LANGUAGE SQL AS 'SELECT

pg_relation_size(relid)';

SELECT my_func(2619);

If changes are made to a function, the user will be able to take action by simply redefining the function, without the need to make changes
to the application.

The following shows an example of taking action by redefining a function as if no changes were made.

The pg_relation_size function is redefined after arguments are added.

 Example

DROP FUNCTION my_func(regclass);

CREATE FUNCTION my_func(relid regclass) RETURNS bigint LANGUAGE SQL AS 'SELECT pg_relation_size(relid,

$$main$$)';

- 5 -

Chapter 2 JDBC Driver
This section describes how to use JDBC drivers.

2.1 Development Environment
This section describes application development using JDBC drivers and the runtime environment.

2.1.1 Combining with JDK or JRE
Refer to Installation and Setup Guide for Client for information on combining with JDK or JRE where JDBC drivers can operate.

2.2 Setup
This section describes the environment settings required to use JDBC drivers and how to encrypt communication data.

2.2.1 Environment Settings
Configuration of the CLASSPATH environment variable is required as part of the runtime environment for JDBC drivers.

The name of the JDBC driver file is as follows:

postgresql-jdbc42.jar

The examples below show how to set the CLASSPATH environment variable.

Note that "<x>" indicates the product version.

- Setting example (TC shell)

setenv CLASSPATH /opt/fsepv<x>client64/jdbc/lib/postgresql-jdbc42.jar:${CLASSPATH}

- Setting example (bash)

CLASSPATH=/opt/fsepv<x>client64/jdbc/lib/postgresql-jdbc42.jar:$CLASSPATH;export CLASSPATH

2.2.2 Message Language and Encoding System Used by Applications
Settings

If the JDBC driver is used, it will automatically set the encoding system on the client to UTF-8, so there is no need to configure this.

 See

Refer to "Automatic Character Set Conversion Between Server and Client" in "Server Administration" in the PostgreSQL Documentation
for information on encoding systems.

Language settings

You must match the language settings for the application runtime environment with the message locale settings of the database server.

Set language in the "user.language" system property.

 Example

Example of running a Java command with system property specified

- 6 -

java -Duser.language=en TestClass1

2.2.3 Settings for Encrypting Communication Data
When using the communication data encryption feature to connect to the database server, set as follows:

Settings for encrypting communication data for connection to the server

This section describes how to create applications for encrypting communication data.

Set the property of the SSL parameter to "true" to encrypt. The default for the SSL parameter is "false".

If ssl is set to "true", sslmode is internally treated as "verify-full".

 Example

- Setting example 1

String url = "jdbc:postgresql://sv1/test";

Properties props = new Properties();

props.setProperty("user","fsepuser");

props.setProperty("password","secret");

props.setProperty("ssl","true");

props.setProperty("sslfactory","org.postgresql.ssl.DefaultJavaSSLFactory");

Connection conn = DriverManager.getConnection(url, props);

- Setting example 2

String url = "jdbc:postgresql://sv1/test?

user=fsepuser&password=secret&ssl=true&sslfactory=org.postgresql.ssl.DefaultJavaSSLFactory";

Connection conn = DriverManager.getConnection(url);

To prevent spoofing of the database server, you need to use the keytool command included with Java to import the CA certificate to the Java
keystore. In addition, specify "org.postgresql.ssl.DefaultJavaSSLFactory" for the sslfactory parameter.

Refer to JDK documentation for details.

 Note

There is no need to set the ssl parameter if the connection string of the DriverManager class is specified, or if the sslmode parameter is
specified in the data source, such as when the application connection switch feature is used. If the ssl parameter is set, the value in the
sslmode parameter will be enabled.

 See

Refer to "Secure TCP/IP Connections with SSL" in "Server Administration" in the PostgreSQL Documentation for information on
encrypting communication data.

2.3 Connecting to the Database
This section explains how to connect to a database.

- Using the DriverManager Class

- Using the PGConnectionPoolDataSource Class

- Using the PGXADataSource Class

- 7 -

 Note

Do not specify "V2" for the "protocolVersion" of the connection string.

2.3.1 Using the DriverManager Class
To connect to the database using the DriverManager class, first load the JDBC driver, then specify the connection string as a URI in the API
of the DriverManager class.

Load the JDBC driver

Specify org.postgresql.Driver.

Connection string

URI connection is performed as follows:

jdbc:postgresql://host:port/database?

user=user&password=password1&loginTimeout=loginTimeout&socketTimeout=socketTimeout

Argument Description

host Specify the host name for the connection destination.

port Specify the port number for the database server.

The default is "27500".

database Specify the database name.

user Specify the username that will connect with the database.

If this is omitted, the username logged into the operating system that is executing the application
will be used.

password Specify a password when authentication is required.

loginTimeout Specify the timeout for connections (in units of seconds).

Specify a value between 0 and 2147483647. There is no limit set if you set 0 or an invalid value.

An error occurs when a connection cannot be established within the specified time.

socketTimeout Specify the timeout for communication with the server (in units of seconds).

Specify a value between 0 and 2147483647. There is no limit set if you set 0 or an invalid value.

An error occurs when data is not received from the server within the specified time.

 Example

Code examples for applications

import java.sql.*;

...

Class.forName("org.postgresql.Driver");

String url = "jdbc:postgresql://sv1:27500/mydb?

user=myuser&password=myuser01&loginTimeout=20&socketTimeout=20";

Connection con = DriverManager.getConnection(url);

2.3.2 Using the PGConnectionPoolDataSource Class
To connect to databases using data sources, specify the connection information in the properties of the data source.

Method description

- 8 -

Argument Description

setServerName Specify the host name for the connection destination.

setPortNumber Specify the port number for the database server.

The default is "27500".

setDatabaseName Specify the database name.

setUser Specify the username of the database.

By default, the name used will be that of the user on the operating system that is executing the
application.

setPassword Specify a password for server authentication.

setLoginTimeout Specify the timeout for connections (in units of seconds).

Specify a value between 0 and 2147483647. There is no limit set if you set 0 or an invalid value.

An error occurs when a connection cannot be established within the specified time.

setSocketTimeout Specify the timeout for communication with the server (in units of seconds).

Specify a value between 0 and 2147483647. There is no limit set if you set 0 or an invalid value.

An error occurs when data is not received from the server within the specified time.

 Example

Code examples for applications

import java.sql.*;

import org.postgresql.ds.PGConnectionPoolDataSource;

...

PGConnectionPoolDataSource source = new PGConnectionPoolDataSource();

source.setServerName("sv1");

source.setPortNumber(27500);

source.setDatabaseName("mydb");

source.setUser("myuser");

source.setPassword("myuser01");

source.setLoginTimeout(20);

source.setSocketTimeout(20);

...

Connection con = source.getConnection();

2.3.3 Using the PGXADataSource Class
To connect to databases using data sources, specify the connection information in the properties of the data source.

Method description

Argument Description

setServerName Specify the host name for the connection destination.

setPortNumber Specify the port number for the database server.

The default is "27500".

setDatabaseName Specify the database name.

setUser Specify the username that will connect with the database.

If this is omitted, the name used will be that of the user on the operating system that is executing
the application.

setPassword Specify a password when authentication by a password is required.

- 9 -

Argument Description

setLoginTimeout Specify the timeout for connections.

The units are seconds. Specify a value between 0 and 2147483647. There is no limit set if you
set 0 or an invalid value.

An error occurs when a connection cannot be established within the specified time.

setSocketTimeout Specify the timeout for communication with the server.

The units are seconds. Specify a value between 0 and 2147483647. There is no limit set if you
set 0 or an invalid value.

An error occurs when data is not received from the server within the specified time.

 Example

Code examples for applications

import java.sql.*;

import org.postgresql.xa.PGXADataSource;

...

PGXADataSource source = new PGXADataSource();

source.setServerName("sv1");

source.setPortNumber(27500);

source.setDatabaseName("mydb");

source.setUser("myuser");

source.setPassword("myuser01");

source.setLoginTimeout(20);

source.setSocketTimeout(20);...

Connection con = source.getConnection();

2.4 Application Development
This section describes the data types required when developing applications that will be connected with FUJITSU Enterprise Postgres.

2.4.1 Relationship between the Application Data Types and Database Data
Types

The following table shows the correspondence between data types in applications and data types in databases.

Data type on the server Java data type
Data types prescribed by

java.sql.Types

character String java.sql.Types.CHAR

national character String java.sql.Types.NCHAR

character varying String java.sql.Types.VARCHAR

national character varying String java.sql.Types.NVARCHAR

text String java.sql.Types.VARCHAR

bytea byte[] java.sql.Types.BINARY

smallint short java.sql.Types.SMALLINT

integer int java.sql.Types.INTEGER

bigint long java.sql.Types.BIGINT

smallserial short java.sql.Types.SMALLINT

- 10 -

Data type on the server Java data type
Data types prescribed by

java.sql.Types

serial int java.sql.Types.INTEGER

bigserial long java.sql.Types.BIGINT

real float java.sql.Types.REAL

double precision double java.sql.Types.DOUBLE

numeric java.math.BigDecimal java.sql.Types.NUMERIC

decimal java.math.BigDecimal java.sql.Types.DECIMAL

money String java.sql.Types.OTHER

date java.sql.Date java.sql.Types.DATE

time with time zone java.sql.Time java.sql.Types.TIME

time without time zone java.sql.Time java.sql.Types.TIME

timestamp without time zone java.sql.Timestamp java.sql.Types.TIMESTAMP

timestamp with time zone java.sql.Timestamp java.sql.Types.TIMESTAMP

interval org.postgresql.util.PGInterval java.sql.Types.OTHER

boolean boolean java.sql.Types.BIT

bit boolean java.sql.Types.BIT

bit varying org.postgresql.util.Pgobject java.sql.Types.OTHER

oid long java.sql.Types.BIGINT

xml java.sql.SQLXML java.sql.Types.SQLXML

array java.sql.Array java.sql.Types.ARRAY

uuid java.util.UUID java.sql.Types.OTHER

point org.postgresql.geometric.Pgpoint java.sql.Types.OTHER

box org.postgresql.geometric.Pgbox java.sql.Types.OTHER

lseg org.postgresql.geometric.Pglseg java.sql.Types.OTHER

path org.postgresql.geometric.Pgpath java.sql.Types.OTHER

polygon org.postgresql.geometric.PGpolygon java.sql.Types.OTHER

circle org.postgresql.geometric.PGcircle java.sql.Types.OTHER

json org.postgresql.util.PGobject java.sql.Types.OTHER

Network address type
(inet,cidr,macaddr, macaddr8) org.postgresql.util.PGobject java.sql.Types.OTHER

Types related to text searches
(svector, tsquery) org.postgresql.util.PGobject java.sql.Types.OTHER

Enumerated type org.postgresql.util.PGobject java.sql.Types.OTHER

Composite type org.postgresql.util.PGobject java.sql.Types.OTHER

Range type org.postgresql.util.PGobject java.sql.Types.OTHER

Although the getString() method of the ResultSet object can be used for all server data types, it is not guaranteed that it will always return
a string in the same format for the same data type.

Strings in a format compatible with the JDBC specifications can be obtained using the Java toString() method of the appropriate data type
(for example, getInt(), getTimestamp()) to conform to the data type on the server.

- 11 -

2.4.2 Statement Caching Feature
The statement caching feature caches SQL statements for each individual connection. This means that when an SQL statement with an
identical string is next executed, the analysis and creation of the statement can be skipped. This improves performance in cases such as when
an SQL statement with an identical string is executed within a loop or method that is executed repeatedly. Furthermore, the statement
caching feature can be combined with the connection pooling feature to further enhance performance.

Cache registration controls

You can configure whether to cache SQL statements using the setPoolable(boolean) method of the PreparedStatement class when the
statement caching feature is enabled.

Values that can be configured are shown below:

false

SQL statements will not be cached, even when the statement caching feature is enabled.

true

SQL statements will be cached if the statement caching feature is enabled.

2.4.3 Creating Applications while in Database Multiplexing Mode
This section explains points to consider when creating applications while in database multiplexing mode.

 See

- Refer to the Cluster Operation Guide (Database Multiplexing) for information on database multiplexing mode.

2.4.3.1 Errors when an Application Connection Switch Occurs and Corresponding
Actions

If an application connection switch occurs while in database multiplexing mode, explicitly close the connection and then reestablish the
connection or reexecute the application.

The table below shows errors that may occur during a switch, and the corresponding action to take.

State Error information

(*1)
Action

Server failure
or
FUJITSU Enterprise Postgres system
failure

Failure occurs
during access

57P01

08006

08007

After the switch is complete,
reestablish the connection, or
reexecute the application.

Accessed during
system failure

08001

Switch to the standby server Switched during
access

57P01

08006

08007

Accessed during
switch

08001

*1: Return value of the getSQLState() method of SQLException.

- 12 -

Chapter 3 ODBC Driver
This section describes application development using ODBC drivers.

3.1 Development Environment
Applications using ODBC drivers can be developed using ODBC interface compatible applications.

Refer to the manuals for the programming languages corresponding to the ODBC interface for information about the environment for
development.

FUJITSU Enterprise Postgres supports ODBC 3.5.

3.2 Setup
You need to set up PsqlODBC, which is an ODBC driver, in order to use applications that use ODBC drivers with FUJITSU Enterprise
Postgres. PsqlODBC is included in the FUJITSU Enterprise Postgres client package.

The following describes how to register the ODBC drivers and the ODBC data source.

3.2.1 Registering ODBC Drivers
When using the ODBC driver on Linux platforms, register the ODBC driver using the following procedure:

1. Install the ODBC driver manager (unixODBC)

 Information

- FUJITSU Enterprise Postgres supports unixODBC Version 2.3 or later.

You can download unixODBC from the following site:

http://www.unixodbc.org/

- To execute unixODBC, you must first install libtool 2.4.6 or later.

You can download libtool from the following website:

http://www.gnu.org/software/libtool/

[Note]

- ODBC driver operation is supported.

- unixODBC operation is not supported.

2. Register the ODBC drivers

Edit the ODBC driver manager (unixODBC) odbcinst.ini file.

 Information

[location of the odbcinst.ini file]

unixOdbcInstallDir/etc/odbcinst.ini

Set the following content:

- 13 -

Definition
name

Description Setting value

[Driver
name]

ODBC
driver name

Set the name of the ODBC driver.

Select the two strings below that correspond to the application type. Concatenate
the strings with no spaces, enclose in "[]", and then specify this as the driver
name.

 Note

The placeholders shown below are enclosed in angle brackets '<>' to avoid
confusion with literal text. Do not include the angle brackets in the string.

- Application architecture

"FUJITSUEnterprisePostgres<fujitsuEnterprisePostgresClientVers>
ppc64le"

- Encoding system used by the application

- In Unicode (only UTF-8 can be used)

"unicode"

- Other than Unicode

"ansi"

Example: The encoding system used by the application is Unicode:

"[FUJITSUEnterprisePostgres<fujitsuEnterprisePostgresClientVers>
ppc64leunicode]"

Description Description
of the
ODBC
driver

Specify a supplementary description for the current data source. Any description
may be set.

Driver64 Path of the
ODBC
driver (64-
bit)

Set the path of the ODBC driver (64-bit).

- If the encoding system is Unicode:

fujitsuEnterprisePostgresClientInstallDir/odbc/lib/

psqlodbcw.so

- If the encoding system is other than Unicode:

fujitsuEnterprisePostgresClientInstallDir/odbc/lib/

psqlodbca.so

FileUsage Use of the
data source
file

Specify 1.

Threading Level of
atomicity
secured for
connection
pooling

Specify 2.

 Example

Note that "<x>" indicates the product version.

- 14 -

[FUJITSU Enterprise Postgres14 ppc64leunicode]

Description = FUJITSU Enterprise Postgres 14 ppc64le unicode driver

Driver64 = /opt/fsepv<x>client64/odbc/lib/psqlodbcw.so

FileUsage = 1

Threading = 2

3.2.2 Registering ODBC Data Sources
This section describes how to register ODBC data sources on Linux.

1. Register the data sources

Edit the odbc.ini definition file for the data source.

 Information

Edit the file in the installation directory for the ODBC driver manager (unixODBC)

unixOdbcInstallDir/etc/odbc.ini

Or

Create a new file in the HOME directory

~/.odbc.ini

 Point

If unixOdbcInstallDir is edited, these will be used as the shared settings for all users that log into the system. If created in the HOME
directory (~/), the settings are used only by the single user.

Set the following content:

Definition name Setting value

[Data source
name]

Set the name for the ODBC data source.

Description Set a description for the ODBC data source. Any description may be set.

Driver Set the following as the name of the ODBC driver. Do not change this value.

Select the two strings below that correspond to the application type. Concatenate the strings
with no spaces and then specify this as the driver name.

 Note

The placeholders shown below are enclosed in angle brackets '<>' to avoid confusion with
literal text. Do not include the angle brackets in the string.

- Application architecture

"FUJITSU Enterprise Postgres<fujitsuEnterprisePostgresClientVers> ppc64le"

- Encoding system used by the application

- In Unicode (only UTF-8 can be used)

"unicode"

- Other than Unicode

- 15 -

Definition name Setting value

"ansi"

Example: The encoding system used by the application is Unicode:

"FUJITSU Enterprise Postgres<fujitsuEnterprisePostgresClientVers>ppc64leunicode"

Database Specify the database name to be connected.

Servername Specify the host name for the database server.

Username Specify the user ID that will connect with the database.

Password Specify the password for the user that will connect to the database.

Port Specify the port number for the database server.

The default is "27500".

SSLMode Specify the communication encryption method. The setting values for SSLMode are as
follows:

- disable: Connect without SSL

- allow: Connect without SSL, and if it fails, connect using SSL

- prefer: Connect using SSL, and if it fails, connect without SSL

- require: Connect always using SSL

- verify-ca: Connect using SSL, and use a certificate issued by a trusted CA (*1)

- verify-full: Connect using SSL, and use a certificate issued by a trusted CA to verify if the
server host name matches the certificate (*1)

ReadOnly Specify whether to set the database as read-only.

- 1: Set read-only

- 0: Do not set read-only

*1: If specifying either "verify-ca" or "verify-full", use the environment variable PGSSLROOTCERT to specify the CA certificate
file as shown below.

Example

export PGSSLROOTCERT=cACertificateFileStorageDir/root.crt

 Example

[MyDataSource]

Description = FUJITSU Enterprise Postgres

Driver = FUJITSU Enterprise Postgres14ppc64leansi

Database = db01

Servername = sv1

Port = 27500

ReadOnly = 0

 Note

In consideration of security, specify the UserName and the Password by the application.

2. Configure the environment variable settings

To execute applications that use ODBC drivers, all of the following settings must be configured in the LD_LIBRARY_PATH
environment variable:

- 16 -

- fujitsuEnterprisePostgresClientInstallDir/lib

- unixOdbcInstallDir(*1)/lib

- libtoolInstallDir(*1)/lib

*1: If the installation directory is not specified when unixODBC and libtool are installed, they will be installed in /usr/local.

3.2.3 Message Language and Encoding System Used by Applications
Settings

This section explains the language settings for the application runtime environment and the encoding settings for the application.

Language settings

You must match the language settings for the application runtime environment with the message locale settings of the database server.

Messages output by an application may include text from messages sent from the database server. In the resulting text, the text of the
application message will use the message locale of the application, and the text of the message sent by the database server will use the
message locale of the database server. If the message locales do not match, more than one language or encoding system will be used.
Moreover, if the encoding systems do not match, characters in the resulting text can be garbled.

Set the locale for messages (LC_MESSAGES category) to match the message locale of the database server. This can be done in a few
different ways, such as using environment variables. Refer to the relevant manual of the operating system for information on the setlocale
function.

 Example

Example of specifying "en_US.UTF-8" with the setlocale function

setlocale(LC_ALL,"en_US.UTF-8");

Specifying the locale of the LC_ALL category propagates the setting to LC_MESSAGE.

Encoding System Settings

Ensure that the encoding system that is embedded in the application and passed to the database, and the encoding system setting of the
runtime environment, are the same. The encoding system cannot be converted correctly on the database server.

Use one of the following methods to set the encoding system for the application:

- Set the PGCLIENTENCODING environment variable in the runtime environment.

- Set the client_encoding keyword in the connection string.

- Use the PQsetClientEncoding function.

 See

Refer to "Supported Character Sets" in "Server Administration" in the PostgreSQL Documentation for information on the strings that
represent the encoding system that can be set.

For example, when using "Unicode" and "8 bit", set the string "UTF8".

 Example

Setting the "PGCLIENTENCODING" environment variable

An example of setting when the encoding of the client is "UTF8" (Bash)

- 17 -

> PGCLIENTENCODING=UTF8; export PGCLIENTENCODING

 Note

Text may be garbled when outputting results to the command prompt. Review the font settings for the command prompt if this occurs.

3.3 Connecting to the Database
Refer to the manual for the programming language corresponding to the ODBC interface.

3.4 Application Development
This section describes how to develop applications using ODBC drivers.

3.4.1 Compiling Applications
Specify the following options when compiling applications.

Table 3.1 Include file and library path

Option How to specify the option

Path of the include file -I unixOdbc64bitIncludeFileDir

Path of the library -L unixOdbc64bitLibraryDir

Table 3.2 ODBC library

Type of library Library name

Dynamic library libodbc.so

 Note

Specify -m64 when creating a 64-bit application.

 Example

The following are examples of compiling ODBC applications:

gcc -m64 -I/usr/local/include(*1) -L/usr/local/lib(*1) -lodbc testproc.c -o testproc

*1: This is an example of building and installing from the source without specifying an installation directory for unixODBC. If you wish
to specify a location, set the installation directory.

3.4.2 Creating Applications While in Database Multiplexing Mode
This section explains points to consider when creating applications while in database multiplexing mode.

- 18 -

 See

- Refer to the Cluster Operation Guide (Database Multiplexing) for information on database multiplexing mode.

3.4.2.1 Errors when an Application Connection Switch Occurs and Corresponding
Actions

If an application connection switch occurs while in database multiplexing mode, explicitly close the connection and then reestablish the
connection or reexecute the application.

The table below shows errors that may occur during a switch, and the corresponding action to take.

State Error information (*1) Action

Server failure
or
FUJITSU Enterprise Postgres system
failure

Failure
occurs during
access

57P01

08S01

After the switch is complete,
reestablish the connection, or
reexecute the application.

Accessed
during
system
failure

08001

Switch to the standby server Switched
during access

57P01

08S01

Accessed
during switch

08001

*1: Return value of SQLSTATE.

- 19 -

Chapter 4 C Library (libpq)
This chapter describes how to use C libraries.

4.1 Development Environment
Install FUJITSU Enterprise Postgres Client Package for the architecture to be developed and executed.

 See

Refer to Installation and Setup Guide for Client for information on the C compiler required for C application development.

4.2 Setup
This section describes the environment settings required to use C libraries and how to encrypt data for communication.

4.2.1 Environment Settings
To execute an application that uses libpq, set the environment variable as shown below.

- Required for compile/link

- LD_LIBRARY_PATH
fujitsuEnterprisePostgresClientInstallDir/lib

- Required for execution of the application

- PGLOCALEDIR
fujitsuEnterprisePostgresClientInstallDir/share/locale

 Example

Note that "<x>" indicates the product version.

> LD_LIBRARY_PATH=/opt/fsepv<x>client64/lib:$LD_LIBRARY_PATH;export LD_LIBRARY_PATH

> PGLOCALEDIR=/opt/fsepv<x>client64/share/locale;export PGLOCALEDIR

4.2.2 Message Language and Encoding System Used by Applications
Settings

This section explains the language settings for the application runtime environment and the encoding settings for the application.

Language settings

You must match the language settings for the application runtime environment with the message locale settings of the database server.

Messages output by an application may include text from messages sent from the database server. In the resulting text, the text of the
application message will use the message locale of the application, and the text of the message sent by the database server will use the
message locale of the database server. If the message locales do not match, more than one language or encoding system will be used.
Moreover, if the encoding systems do not match, characters in the resulting text can be garbled.

Set the locale for messages (LC_MESSAGES category) to match the message locale of the database server. This can be done in a few
different ways, such as using environment variables. Refer to the relevant manual of the operating system for information on the setlocale
function.

- 20 -

 Example

Example of specifying "en_US.UTF-8" with the setlocale function

setlocale(LC_ALL,"en_US.UTF-8");

Specifying the locale of the LC_ALL category propagates the setting to LC_MESSAGE.

Encoding System Settings

Ensure that the encoding system that is embedded in the application and passed to the database, and the encoding system setting of the
runtime environment, are the same. The encoding system cannot be converted correctly on the database server.

Use one of the following methods to set the encoding system for the application:

- Set the PGCLIENTENCODING environment variable in the runtime environment.

- Set the client_encoding keyword in the connection string.

- Use the PQsetClientEncoding function.

 See

Refer to "Supported Character Sets" in "Server Administration" in the PostgreSQL Documentation for information on the strings that
represent the encoding system that can be set.

For example, when using "Unicode" and "8 bit", set the string "UTF8".

 Note

Text may be garbled when outputting results to the command prompt. Review the font settings for the command prompt if this occurs.

4.2.3 Settings for Encrypting Communication Data
Set in one of the following ways when performing remote access using communication data encryption:

When setting from outside with environment variables

Specify "require", "verify-ca", or "verify-full" in the PGSSLMODE environment variable.

In addition, the parameters for the PGSSLROOTCERT and PGSSLCRL environment variables need to be set to prevent spoofing of the
database server.

 See

Refer to "Environment Variables" in "Client Interfaces" in the PostgreSQL Documentation for information on environment variables.

When specifying in the connection URI

Specify "require", "verify-ca", or "verify-full" in the "sslmode" parameter of the connection URI.

In addition, the parameters for the sslcert, sslkey, sslrootcert, and sslcrl need to be set to prevent spoofing of the database server.

 See

Refer to "Secure TCP/IP Connections with SSL" in "Server Administration" in the PostgreSQL Documentation for information on
encrypting communication data.

- 21 -

4.3 Connecting with the Database

 Point

Use the connection service file to specify the connection destination. In the connection service file, a name (service name) is defined as a
set, comprising information such as connection destination information and various types of tuning information set for connections. By
using the service name defined in the connection service file when connecting to databases, it is no longer necessary to modify applications
when the connection information changes.

Refer to "Client Interfaces", "The Connection Service File" in the PostgreSQL Documentation for details.

 See

Refer to "Database Connection Control Functions" in "Client Interfaces" in the PostgreSQL Documentation.

In addition, refer to "5.3 Connecting with the Database" in "Embedded SQL in C " for information on connection string.

4.4 Application Development

 See

Refer to "libpq - C Library" in "Client Interfaces" in the PostgreSQL Documentation for information on developing applications.

However, if you are using the C library, there are the following differences to the PostgreSQL C library (libpq).

4.4.1 Compiling Applications
Specify the following paths when compiling applications.

Refer to your compiler documentation for information on how to specify the path.

Table 4.1 Include file and library path

Type of path Path name

Path of the include file fujitsuEnterprisePostgresClientInstallDir/include

Path of the library fujitsuEnterprisePostgresClientInstallDir/lib

Table 4.2 C Library (libpq library)

Type of library Library name

Dynamic library libpq.so

Static library libpq.a

4.4.2 Creating Applications while in Database Multiplexing Mode
This section explains points to consider when creating applications while in database multiplexing mode.

 See

- Refer to the Cluster Operation Guide (Database Multiplexing) for information on database multiplexing mode.

- 22 -

4.4.2.1 Errors when an Application Connection Switch Occurs and Corresponding
Actions

If an application connection switch occurs while in database multiplexing mode, explicitly close the connection and then reestablish the
connection or reexecute the application.

The table below shows errors that may occur during a switch, and the corresponding action to take.

State Error information Action

Server failure
or
FUJITSU Enterprise Postgres system
failure

Failure occurs
during access

PGRES_FATAL_ERROR(*
1)

57P01(*2)

NULL(*2)

After the switch is
complete, reestablish
the connection, or
reexecute the
application.

Accessed during
system failure

CONNECTION_BAD(*3)

Switch to the standby server Switched during
access

PGRES_FATAL_ERROR(*
1)

57P01(*2)

NULL(*2)

Accessed during
switch

CONNECTION_BAD(*3)

*1: Return value of PQresultStatus().

*2: Return value of PQresultErrorField() PG_DIAG_SQLSTATE.

*3: Return value of PQstatus().

- 23 -

Chapter 5 Embedded SQL in C
This chapter describes application development using embedded SQL in C.

5.1 Development Environment
Install FUJITSU Enterprise Postgres Client Package for the architecture to be developed and executed.

 See

Refer to Installation and Setup Guide for Client for information on the C compiler required for C application development.

 Note

C++ is not supported. Create a library by implementing embedded SQL in C, and call it from C++.

5.2 Setup

5.2.1 Environment Settings
When using embedded SQL in C, the same environment settings as when using the C library (libpq) are required.

Refer to "4.2.1 Environment Settings" in "C Library (libpq)" for information on the environment settings for the library for C.

Additionally, set the following path for the precompiler ecpg in the PATH environment variable:

fujitsuEnterprisePostgresClientInstallDir/bin

5.2.2 Message Language and Encoding System Used by Applications
Settings

The message language and the encoding System Settings Used by Applications settings are the same as when using the library for C.

However, in embedded SQL, the PQsetClientEncoding function cannot be used in the encoding system settings. In embedded SQL, use the
SET command to specify the encoding system in client_encoding.

Refer to "4.2.2 Message Language and Encoding System Used by Applications Settings" in "C Library (libpq)" for information on the
settings for the library for C.

5.2.3 Settings for Encrypting Communication Data
When encrypting the communication data, the same environment settings as when using the C library (libpq) are required.

Refer to "4.2.3 Settings for Encrypting Communication Data" in "C Library (libpq)" for information on the environment settings for the C
library.

5.3 Connecting with the Database

 Point

- It is recommended to use a connection service file to specify connection destinations. In the connection service file, a name (service
name) is defined as a set, comprising information such as connection destination information and various types of tuning information
set for connections. By using the service name defined in the connection service file when connecting to databases, it is no longer

- 24 -

necessary to modify applications when the connection information changes.
Refer to "The Connection Service File" in "Client Interfaces" in the PostgreSQL Documentation for information.

- If using a connection service file, perform either of the procedures below:

- Set the service name as a string literal or host variable, as follows:

tcp:postgresql://?service=my_service

- Set the service name in the environment variable PGSERVICE, and use CONNECT TO DEFAULT

Use the CONNECT statement shown below to create a connection to the database server.

Format

EXEC SQL CONNECT TO target [AS connection-name] [USER user-name];

target

Write in one of the following formats:

- dbname@host:port

- tcp:postgresql://host:port/dbname[?options]

- unix:postgresql://host[:port][/dbname][?options]
(Definition method when using the UNIX domain socket)

- SQL string literal containing one of the above formats

- Reference to a character variable containing one of the above formats

- DEFAULT

user-name

Write in one of the following formats:

- username

- username/password

- username IDENTIFIED BY password

- username USING password

Description of the arguments

Argument Description

dbname Specify the database name.

host Specify the host name for the connection destination.

port Specify the port number for the database server.

The default is "27500".

connection-name Specify connection names to identify connections when multiple connections are to be processed
within a single program.

username Specify the user that will connect with the database.

If this is omitted, the name used will be that of the user on the operating system that is executing the
application.

password Specify a password when authentication is required.

options Specify the following parameter when specifying a time for timeout. Connect parameters with & when
specifying more than one. The following shows the values specified for each parameter.

- connect_timeout

- 25 -

Argument Description

Specify the timeout for connections.

Specify a value between 0 and 2147483647 (in seconds). There is no limit set if you set 0 or an
invalid value. If "1" is specified, the behavior will be the same as when "2" was specified. An error
occurs when a connection cannot be established within the specified time.

- keepalives

This enables keepalive.

Keepalive is disabled if 0 is specified. Keepalive is enabling when any other value is specified. The
default is keepalive enabled. Keepalive causes an error to occur when it is determined that the
connection with the database is disabled.

- keepalives_idle

Specify the time until the system starts sending keepalive messages when communication with the
database is not being performed.

Specify a value between 1 and 32767 (in seconds). The default value of the system is used if this
is not specified.

- keepalives_interval

Specify the interval between resends when there is no response to keepalive messages.

Specify a value between 1 and 32767 (in seconds). The default value of the system is used if this
is not specified.

- keepalives_count

Specify the number of resends for keepalive messages.

Specify a value between 1 and 127. The default value of the system is used if this is not specified.

- tcp_user_timeout

After establishing the connection, when sending from the client to the server, if the TCP resend
process operates, specify the time until it is considered to be disconnected.

Specify a value between 0 and 2147483647 (in millseconds). The default value of the system is
used if 0. 0 will be set as default if nothing is specified.

 Note

If a value other than 0 is specified for the tcp_user_timeout parameter, the waiting time set by the tcp_keepalives_idle parameter and
tcp_keepalives_interval parameter will be invalid and the waiting time specified by the tcp_user_timeout parameter will be used.

Code examples for applications

EXEC SQL CONNECT TO tcp:postgresql://sv1:27500/mydb?

connect_timeout=20&keepalives_idle=20&keepalives_interval=5&keepalives_count=2&keepalives=1 USER

myuser/myuser01;

5.4 Application Development
Refer to "ECPG - Embedded SQL in C" in "Client Interfaces" in the PostgreSQL Documentation for information on developing
applications.

However, when using embedded SQL in C, there are the following differences to the embedded SQL (ECPG) in PostgreSQL C.

- 26 -

5.4.1 Support for National Character Data Types
This section describes how to use the national character data types using the SQL embedded C preprocessor.

The following explains the C language variable types corresponding to the NCHAR type:

Specify the number of characters specified for the NCHAR type multiple by 4, plus 1 for the length of the host variable.

Data Type Host variable type

NATIONAL CHARACTER(n) NCHAR variable name [nx4+1]

NATIONAL CHARACTER VARYING(n) NVARCHAR variable name [nx4+1]

 See

Refer to "Handling Character Strings" in "Client Interfaces" in the PostgreSQL documentation for information on using character string
types.

5.4.2 Compiling Applications
Append the extension "pgc" to the name of the source file for the embedded SQL in C.

When the pgc file is precompiled using the ecpg command, C source files will be created, so use the C compiler for the compile.

Precompiling example

ecpg testproc.pgc

If an optimizer hint block comment is specified for the SQL statement, specify the following option in the ecpg command:

--enable-hint

Enables the optimizer hint block comment (hereafter, referred to as the "hint clause"). If this option is not specified, the hint clause will
be removed as a result of the ecpg precompile and be disabled.

The SQL statements that can be specified in the hint clause are SELECT, INSERT, UPDATE, and DELETE.

The locations in which the hint clause can be specified are immediately after one of the SELECT, INSERT, UPDATE, DELETE, or
WITH keywords. A syntax error will occur if any other location is specified.

Example of specifying the hint clause

EXEC SQL SELECT /*+ IndexScan(prod ix01) */ name_id INTO :name_id FROM prod WHERE id = 1;

Refer to "9.1.1 Optimizer Hints" for information on optimizer hints.

 Note

Take the following points into account when using embedded SQL source files:

- Multibyte codes expressed in SJIS or UTF-16 cannot be included in statements or host variable declarations specified in EXEC SQL.

- Do not use UTF-8 with a byte order mark (BOM), because an error may occur during compilation if the BOM character is incorrectly
recognized as the source code.

- Multibyte characters cannot be used in host variable names.

- It is not possible to use a TYPE name that contains multibyte characters, even though it can be defined.

- 27 -

Specify the following paths when compiling a C application output with precompiling.

Refer to your compiler documentation for information on how to specify the path.

Table 5.1 Include file and library path

Type of path Path name

Path of the include file fujitsuEnterprisePostgresClientInstallDir/include

Path of the library fujitsuEnterprisePostgresClientInstallDir/lib

Table 5.2 C Library

Type of library Library name Note

Dynamic library libecpg.so

libpgtypes.so When using the pgtypes library

Static library libecpg.a

libpgtypes.a When using the pgtypes library

5.4.3 Bulk INSERT
This section describes the bulk INSERT.

Synopsis

EXEC SQL [AT conn] [FOR { numOfRows | ARRAY_SIZE }]

 INSERT INTO tableName [(colName [, ...])]

 { VALUES ({ expr | DEFAULT } [, ...]) [, ...] | query }

 [RETURNING * | outputExpr [[AS] outputName] [, ...]

 INTO outputHostVar [[INDICATOR] indicatorVar] [, ...]];

Description

Bulk INSERT is a feature that inserts multiple rows of data in bulk.

By specifying the array host variable that stored the data in the VALUES clause of the INSERT statement, the data for each element in the
array can be inserted in bulk. This feature is used by specifying the insertion count in the FOR clause immediately before the INSERT
statement.

FOR Clause

Specify the insertion count using numOfRows or ARRAY_SIZE in the FOR clause. The FOR clause can be specified only in the
INSERT statement, not in other update statements.

numOfRows and ARRAY_SIZE

Insertion processing will be executed only for the specified count. However, if the count is 1, it will be assumed that the FOR clause
was omitted when the application is executed. In this case, proceed according to the INSERT specification in the PostgreSQL
Documentation.

Specify the FOR clause as an integer host variable or as a literal.

Specify ARRAY_SIZE to insert all elements of the array in the table. When specifying ARRAY_SIZE, specify at least one array in
expr.

If two or more arrays were specified in expr, it will be assumed that ARRAY_SIZE is the minimum number of elements in the array.

numOfRows or ARRAY_SIZE must exceed the minimum number of elements in all arrays specified in expr, outputHostVar, and
indicatorVal.

The following example shows how to specify the FOR clause.

- 28 -

int number_of_rows = 10;

int id[25];

char name[25][10];

EXEC SQL FOR :number_of_rows /* will process 10 rows */

INSERT INTO prod (name, id) VALUES (:name, :id);

EXEC SQL FOR ARRAY_SIZE /* will process 25 rows */

INSERT INTO prod (name, id) VALUES (:name, :id);

expr

Specify the value to be inserted in the table. Array host variables, host variable literals, strings, and pointer variables can be specified.
Structure type arrays and pointer variable arrays cannot be specified.

Do not use pointer variables and ARRAY_SIZE at the same time. The reason for this is that the number of elements in the area
represented by the pointer variable cannot be determined.

query

A query (SELECT statement) that supplies the rows to be inserted. The number of rows returned by query must be 1. If two or more rows
are returned, an error will occur. This cannot be used at the same time as ARRAY_SIZE.

outputHostVar, indicatorVal

These must be array host variables or pointer variables.

Error Messages

Given below are the error messages that are output when bulk INSERT functionality is not used correctly.

Message

invalid statement name "FOR value should be positive integer"

Cause

The value given for numOfRows is less than or equal to 0.

Solution

Specify a value that is more than or equal to 1 for numOfRows.

Message

invalid statement name "Host array variable is needed when using FOR ARRAY_SIZE"

Cause

A host array is not specified in the values clause when using the ARRAY_SIZE keyword.

Solution

At least one host array variable should be included in the values clause

Message

SELECT...INTO returns too many rows

Cause

The number of rows returned by the 'SELECT ... INTO' query in the INSERT statement is more than one.

Solution

When the value of numOfRows is more than one, the maximum number of rows that can be returned by the 'SELECT ... INTO' query
in the INSERT statement is one.

Limitations

The limitations when using bulk INSERT are given below.

- 29 -

- Array of structures should not be used as an input in the 'VALUES' clause. Attempted use will result in junk data being inserted into
the table.

- Array of pointers should not be used as an input in the 'VALUES' clause. Attempted use will result in junk data being inserted into the
table.

- ECPG supports the use of 'WITH' clause in single INSERT statements. 'WITH' clause cannot be used in bulk INSERT statements.

- ECPG does not calculate the size of the pointer variable. So when a pointer variable is used that includes multiple elements, numOfRows
should be less than or equal to the number of elements in the pointer. Otherwise, junk data will be inserted into the table.

- If an error occurs, all bulk INSERT actions will be rolled back, therefore, no rows are inserted. However, if the RETURNING clause
was used, and the error occurred while obtaining the rows after the insertion was successful, the insertion processing will not be rolled
back.

Samples

Given below are some sample usages of the bulk INSERT functionality.

Basic Bulk INSERT

int in_f1[4] = {1,2,3,4};

...

EXEC SQL FOR 3 INSERT INTO target (f1) VALUES (:in_f1);

The number of rows to insert indicated by the FOR clause is 3, so the data in the first 3 elements of the host array variable are inserted
into the table. The contents of the target table will be:

 f1

 1

 2

 3

(3 rows)

Also a host integer variable can be used to indicate the number of rows that will be inserted in FOR clause, which will produce the same
result as above:

int num = 3;

int in_f1[4] = {1,2,3,4};

...

EXEC SQL FOR :num INSERT INTO target (f1) VALUES (:in_f1);

Inserting constant values

Constant values can also be bulk INSERTed into the table as follows:

EXEC SQL FOR 3 INSERT INTO target (f1,f2) VALUES (DEFAULT,'hello');

Assuming the 'DEFAULT' value for the 'f1' column is '0', the contents of the target table will be:

f1 | f2

---+-------

 0 | hello

 0 | hello

 0 | hello

(3 rows)

Using ARRAY_SIZE

'FOR ARRAY_SIZE' can be used to insert the entire contents of a host array variable, without explicitly specifying the size, into the
table.

- 30 -

 int in_f1[4] = {1,2,3,4};

...

EXEC SQL FOR ARRAY_SIZE INSERT INTO target (f1) VALUES (:in_f1);

In the above example, four rows are inserted into the table.

 Note

If there are multiple host array variables specified as input values, then the number of rows inserted is same as the smallest array size.
The example given below demonstrates this usage.

int in_f1[4] = {1,2,3,4};

char in_f3[3][10] = {"one", "two", "three"};

...

EXEC SQL FOR ARRAY_SIZE INSERT INTO target (f1,f3) VALUES (:in_f1,:in_f3);

In the above example, the array sizes are 3 and 4. Given that the smallest array size is 3, only three rows are inserted into the table. The
table contents are given below.

 f1 | f3

----+-------

 1 | one

 2 | two

 3 | three

(3 rows)

Using Pointers as Input

Pointers that contain multiple elements can be used in bulk INSERT.

int *in_pf1 = NULL;

in_pf1 = (int*)malloc(4*sizeof(int));

in_pf1[0]=1;

in_pf1[1]=2;

in_pf1[2]=3;

in_pf1[3]=4;

...

EXEC SQL FOR 4 INSERT INTO target (f1) values (:in_pf1);

The above example will insert four rows into the target table.

Using SELECT query

When using bulk INSERT, the input values can be got from the results of a SELECT statement. For example,

EXEC SQL FOR 4 INSERT INTO target(f1) SELECT age FROM source WHERE name LIKE 'foo';

Assuming that the 'SELECT' query returns one row, the same row will be inserted into the target table four times.

 Note

If the 'SELECT' query returns more than one row, the INSERT statement will throw an error.

EXEC SQL FOR 1 INSERT INTO target(f1) SELECT age FROM source;

In the above example, all the rows returned by the 'SELECT' statement will be inserted into the table. In this context '1' has the meaning
of 'returned row equivalent'.

- 31 -

Using RETURNING clause

Bulk INSERT supports the same RETURNING clause syntax as normal INSERT. An example is given below.

int out_f1[4];

int in_f1[4] = {1,2,3,4};

...

EXEC SQL FOR 3 INSERT INTO target (f1) VALUES (:in_f1) RETURNING f1 INTO :out_f1;

After the execution of the above INSERT statement, the 'out_f1' array will have 3 elements with the values of '1','2' and '3'.

5.4.4 Creating Applications while in Database Multiplexing Mode
This section explains points to consider when creating applications while in database multiplexing mode.

 See

- Refer to the Cluster Operation Guide (Database Multiplexing) for information on database multiplexing mode.

5.4.4.1 Errors when an Application Connection Switch Occurs and Corresponding
Actions

If an application connection switch occurs while in database multiplexing mode, explicitly close the connection and then reestablish the
connection or reexecute the application.

The table below shows errors that may occur during a switch, and the corresponding action to take.

State Error information (*1) Action

Server failure
or
FUJITSU Enterprise Postgres system
failure

Failure occurs
during access

57P01

57P02

YE000

26000

40001

After the switch is
complete, reestablish the
connection, or reexecute
the application.

Accessed during
node/system failure

08001

Switch to the standby server Switched during
access

57P01

57P02

YE000

26000

40001

Accessed during
switch

08001

*1: Return value of SQLSTATE.

5.4.5 Notes

Notes on creating multithreaded applications

In embedded SQL in C, DISCONNECT ALL disconnects all connections within a process, and therefore it is not thread-safe in all
operations that use connections. Do not use it in multithreaded applications.

- 32 -

Chapter 6 SQL References
This chapter explains the SQL statement features expanded by FUJITSU Enterprise Postgres.

6.1 Expanded Trigger Definition Feature
This section explains the expanded trigger definition feature.

6.1.1 CREATE TRIGGER
In addition to features of PostgreSQL, triggers can be created with DO option.

Synopsis

CREATE [OR REPLACE] [CONSTRAINT] TRIGGER name { BEFORE | AFTER | INSTEAD OF } { event [OR ...] }

 ON table_name

 [FROM referenced_table_name]

 [NOT DEFERRABLE | [DEFERRABLE] [INITIALLY IMMEDIATE | INITIALLY DEFERRED]]

 [REFERENCING { { OLD | NEW } TABLE [AS] transition_relation_name } [...]]

 [FOR [EACH] { ROW | STATEMENT }]

 [WHEN (condition)]

 { EXECUTE { FUNCTION | PROCEDURE } function_name (arguments)

 | DO [LANGUAGE lang_name] code }

Description

Refer to the PostgreSQL Documentation for information about CREATE TRIGGER. This section describes DO option.

A trigger which is created with DO option will be associated with the specified table or view and will execute the specified code by the
specified procedural language of DO (unnamed code block) when certain events occur.

Parameters

lang_name

The name of the language that the function is implemented in.

plpgsql is supported in CREATE TRIGGER.

code

When the certain events occur, it executes the code in a specified procedural language. The unnamed code block does not require a prior
definition like a function. Syntax is same as procedural language.

 Note

- A trigger defined with DO option cannot be replaced by a trigger defined with EXECUTE PROCEDURE option.

- A trigger defined with EXECUTE PROCEDURE option cannot be replaced by a trigger defined with DO option.

Examples

It executes the code block that is specified by DO before the table is updated.
(Example that LANGUAGE is plpgsql)

CREATE TRIGGER check_update

 BEFORE UPDATE ON accounts

 FOR EACH ROW

 DO $$BEGIN RETURN NEW; END;$$;

- 33 -

 Information

When a trigger created with DO option, a new function is created internally. The name of function is "schema name"."on table
name"_"trigger name"_TRIGPROC(serial number).

- 34 -

Chapter 7 Compatibility with Oracle Databases
This chapter describes the environment settings and functionality offered for features that are compatible with Oracle databases.

7.1 Overview
Features compatible with Oracle databases are provided. These features enable you to easily migrate to FUJITSU Enterprise Postgres and
reduce the costs of reconfiguring applications.

The table below lists features compatible with Oracle databases.

Table 7.1 Features compatible with Oracle databases

Category Feature

Item Overview

SQL Queries Outer join operator (+) Operator for outer joins

DUAL table Table provided by the system

Functions DECODE Compares values, and if they match, returns a
corresponding value

SUBSTR Extracts part of a string using characters to specify position
and length

NVL Returns a substitute value when a value is NULL

Package DBMS_ALERT Sends alerts

DBMS_ASSERT Perform assertions on input values

DBMS_OUTPUT Sends messages to clients

DBMS_PIPE Execution of inter-session communication

DBMS_RANDOM Random number generation

DBMS_UTILITY Addition of various functions

UTL_FILE Enables text file operations

DBMS_SQL Enables dynamic SQL execution

 See

In addition to the above, refer to the file below for information on the features compatible with Oracle databases.

fujitsuEnterprisePostgresInstallDir/share/doc/extension/README.asciidoc

7.2 Precautions when Using the Features Compatible with Oracle
Databases

This section provides notes on using the features compatible with oracle databases.

7.2.1 Notes on SUBSTR
SUBSTR is implemented in FUJITSU Enterprise Postgres and Oracle databases using different external specifications.

For this reason, when using SUBSTR, define which specification is to take precedence. In the default configuration of FUJITSU Enterprise
Postgres, the specifications of FUJITSU Enterprise Postgres take precedence.

When using the SUBSTR function compatible with Oracle databases, set "oracle" and "pg_catalog" in the "search_path" parameter of
postgresql.conf. You must specify "oracle" before "pg_catalog" when doing this.

- 35 -

search_path = '"$user", public, oracle, pg_catalog'

 Information

- The search_path parameter specifies the order in which schemas are searched. The SUBSTR function in Oracle databases is defined
in the oracle schema.

- Refer to "Statement Behavior" in "Client Connection Defaults" in "Server Administration" in the PostgreSQL Documentation for
information on search_path.

7.2.2 Notes when Integrating with the Interface for Application Development
The SQL noted in "Table 7.1 Features compatible with Oracle databases" can be used in the interface for application development.

Note that both "public" and the schema name in the SQL statement must be specified as the SearchPath parameter before "oracle" and
"pg_catalog" when using the Oracle database-compatible feature SUBSTR.

7.3 Queries
The following queries are supported:

- Outer Join Operator (+)

- DUAL Table

7.3.1 Outer Join Operator (+)
In the WHERE clause conditional expression, by adding the plus sign (+), which is the outer join operator, to the column of the table you
want to add as a table join, it is possible to achieve an outer join that is the same as a joined table (OUTER JOIN).

Syntax

SELECT statement

SELECT … [WHERE [NOT] joinCond ...] …

SELECT … [WHERE srchCond]...] …

Join condition

{ colSpec(+) = colSpec | colSpec = colSpec(+) }

 Note

Here we are dealing only with the WHERE clause of the SELECT statement. Refer to "SQL Commands" in "Reference" in the PostgreSQL
Documentation for information on the overall syntax of the SELECT statement.

General rules

WHERE clause

- The WHERE clause specifies search condition or join conditions for the tables that are derived.

- Search conditions are any expressions that return BOOLEAN types as the results of evaluation. Any rows that do not meet these
conditions are excluded from the output. When the values of the actual rows are assigned to variables and if the expression returns
TRUE, those rows are considered to have met the conditions.

- Join conditions are comparison conditions that specify outer join operators. Join conditions in a WHERE clause return a table that
includes all the rows that meet the join conditions, including rows that do not meet all the join conditions.

- Join conditions take precedence over search conditions. For this reason, all rows returned by the join conditions are subject to the
search conditions.

- 36 -

- The following rules and restrictions apply to queries that use outer join operators. It is therefore recommended to use FROM clause
joined tables (OUTER JOIN) rather than outer join operators:

- Outer join operators can only be specified in the WHERE clause.

- Outer join operators can only be specified for base tables or views.

- To perform outer joins using multiple join conditions, it is necessary to specify outer join operators for all join conditions.

- When combining join conditions with constants, specify outer join operators in the corresponding column specification. When
not specified, they will be treated as search conditions.

- The results column of the outer join of table t1 is not returned if table t1 is joined with table t2 by specifying an outer join operator
in the column of t1, then table t1 is joined with table t3 by using search conditions.

- It is not possible to specify columns in the same table as the left/right column specification of a join condition.

- It is not possible to specify an expression other than a column specification for outer join operators, but they may be specified
for the columns that compose the expression.

There are the following limitations on the functionality of outer join operators when compared with joined tables (OUTER
JOIN). To use functionality that is not available with outer join operators, use joined tables (OUTER JOIN).

Table 7.2 Range of functionality with outer join operators

Functionality available with joined tables (OUTER
JOIN)

Outer join operator

Outer joins of two tables Y

Outer joins of three or more tables Y (*1)

Used together with joined tables within the same query N

Use of the OR logical operator to a join condition N

Use of an IN predicate to a join condition N

Use of subqueries to a join condition N

Y: Available
N: Not available

*1: The outer joins by outer join operators can return outer join results only for one other table. For this reason, to combine outer
joins of table t1 and table t2 or table t2 and table t3, it is not possible to specify outer join operators simultaneously for table t2.

 Example

Table configuration

t1

col1 col2 col3

1001 AAAAA 1000

1002 BBBBB 2000

1003 CCCCC 3000

t2

col1 col2

1001 aaaaa

1002 bbbbb

1004 ddddd

- 37 -

Example 1: Return all rows in table t2, including those that do not exist in table t1.

SELECT *

 FROM t1, t2

 WHERE t1.col1(+) = t2.col1;

 col1 | col2 | col3 | col1 | col2

------+------------+------+------+------------

 1001 | AAAAA | 1000 | 1001 | aaaaa

 1002 | BBBBB | 2000 | 1002 | bbbbb

 | | | 1004 | ddddd

(3 rows)

This is the same syntax as the joined table (OUTER JOIN) of the FROM clause shown next.

SELECT *

 FROM t1 RIGHT OUTER JOIN t2

 ON t1.col1 = t2.col1;

Example 2: In the following example, the results are filtered to records above 2000 in t1.col3 by search conditions, and the records are those
in table t2 that include ones that do not exist in table t1. After filtering with the join conditions, there is further filtering with the search
conditions, so there will only be one record returned.

SELECT *

 FROM t1, t2

 WHERE t1.col1(+) = t2.col1

 AND t1.col3 >= 2000;

 col1 | col2 | col3 | col1 | col2

------+------------+------+------+------------

 1002 | BBBBB | 2000 | 1002 | bbbbb

(1 row)

This is the same syntax as the joined table (OUTER JOIN) of the FROM clause shown next.

SELECT *

 FROM t1 RIGHT OUTER JOIN t2

 ON t1.col1 = t2.col1

 WHERE t1.col3 >= 2000;

7.3.2 DUAL Table
DUAL table is a virtual table provided by the system. Use when executing SQL where access to a base table is not required, such as when
performing tests to get result expressions such as functions and operators.

 Example

In the following example, the current system date is returned.

SELECT CURRENT_DATE "date" FROM DUAL;

 date

 2013-05-14

(1 row)

7.4 SQL Function Reference
The following SQL functions are supported:

- 38 -

- DECODE

- SUBSTR

- NVL

7.4.1 DECODE
Description

Compares values and if they match, returns a corresponding value.

Syntax

DECODE(expr, srch, result [, srch, result]... [, default])

General rules

- DECODE compares values of the value expression to be converted and the search values one by one. If the values match, a
corresponding result value is returned. If no values match, the default value is returned if it has been specified. A NULL value is returned
if a default value has not been specified.

- If the same search value is specified more than once, then the result value returned is the one listed for the first occurrence of the search
value.

- The following data types can be used in result values and in the default value:

- CHAR

- VARCHAR

- NCHAR

- NCHAR VARYING

- TEXT

- INTEGER

- BIGINT

- NUMERIC

- DATE

- TIME WITHOUT TIME ZONE

- TIMESTAMP WITHOUT TIME ZONE

- TIMESTAMP WITH TIME ZONE

- The same data type must be specified for the values to be converted and the search values. However, note that different data types may
also be specified if a literal is specified in the search value, and the value expression to be converted contains data types that can be
converted. When specifying literals, refer to "Table A.1 Data type combinations that contain literals and can be converted implicitly"
in "A.3 Implicit Data Type Conversions" for information on the data types that can be specified.

- If the result values and default value are all literals, the data types for these values will be as shown below:

- If all values are string literals, all will become character types.

- If there is one or more numeric literal, all will become numeric types.

- If there is one or more literal cast to the datetime/time types, all will become datetime/time types.

- If the result values and default value contain a mixture of literals and non-literals, the literals will be converted to the data types of the
non-literals. When specifying literals, refer to "Table A.1 Data type combinations that contain literals and can be converted implicitly"
in "A.3 Implicit Data Type Conversions" for information on the data types that can be converted.

- The same data type must be specified for all result values and for the default value. However, different data types can be specified if
the data type of any of the result values or default value can be converted - these data types are listed below:

- 39 -

Table 7.3 Data type combinations that can be converted by DECODE (summary)
Other result values or default value

Numeric
type

Character
type

Date/time type

Result value (any) Numeric type Y N N

Character type N Y N

Date/time type N N S (*1)

Y: Can be converted
S: Some data types can be converted
N: Cannot be converted

*1: The data types that can be converted for date/time types are listed below:

Table 7.4 Result value and default value date/time data types that can be converted by DECODE

Other result values or default value

DATE
TIME

WITHOUT
TIME ZONE

TIMESTAMP
WITHOUT TIME

ZONE

TIMESTAMP
WITH TIME

ZONE

Result
value
(any)

DATE Y N Y Y

TIME WITHOUT TIME ZONE N Y N N

TIMESTAMP WITHOUT
TIME ZONE

Y N Y Y

TIMESTAMP WITH TIME
ZONE

Y N Y Y

Y: Can be converted
N: Cannot be converted

- The data type of the return value will be the data type within the result or default value that is longest and has the highest precision.

 Example

In the following example, the value of col3 in table t1 is compared and converted to a different value. If the col3 value matches search value
1, the result value returned is "one". If the col3 value does not match any of search values 1, 2, or 3, the default value "other number" is
returned.

SELECT col1, DECODE(col3, 1000, 'one',

 2000, 'two',

 3000, 'three',

 'other number') "num-word"

 FROM t1;

col1 | num-word

------+----------

 1001 | one

 1002 | two

 1003 | three

(3 rows)

7.4.2 SUBSTR
Description

Extracts part of a string using characters to specify position and length.

- 40 -

Syntax

SUBSTR(str, startPos [, len])

General rules

- SUBSTR extracts and returns a substring of string str, beginning at position startPos, for number of characters len.

- When startPos is positive, it will be the number of characters from the beginning of the string.

- When startPos is 0, it will be treated as 1.

- When startPos is negative, it will be the number of characters from the end of the string.

- When len is not specified, all characters to the end of the string are returned. NULL is returned when len is less than 1.

- For startPos and len, specify a SMALLINT or INTEGER type. When specifying literals, refer to "Table A.1 Data type combinations
that contain literals and can be converted implicitly" in "A.3 Implicit Data Type Conversions" for information on the data types that can
be specified.

- The data type of the return value is TEXT.

 Note

- There are two types of SUBSTR. One that behaves as described above, and one that behaves the same as SUBSTRING. The search_path
parameter must be modified for it to behave the same as the specification described above.

- It is recommended to set search_path in postgresql.conf. In this case, it will be effective for each instance. Refer to "7.2.1 Notes on
SUBSTR" for information on how to configure postgresql.conf.

- The configuration of search_path can be done at the user level or at the database level. Setting examples are shown below.

- Example of setting at the user level

This can be set by executing an SQL command. In this example, user1 is used as the username.

ALTER USER user1 SET search_path = "$user",public,oracle,pg_catalog;

- Example of setting at the database level

This can be set by executing an SQL command. In this example, db1 will be used as the database name.

ALTER DATABASE db1 SET search_path = "$user",public,oracle,pg_catalog;

You must specify "oracle" before "pg_catalog".

- If the change has not been implemented, SUBSTR is the same as SUBSTRING.

 See

Refer to "SQL Commands" in "Reference" in the PostgreSQL Documentation for information on ALTER USER and ALTER DATABASE.

 Information

The general rules for SUBSTRING are as follows:

- The start position will be from the beginning of the string, whether positive, 0, or negative.

- When len is not specified, all characters to the end of the string are returned.

- An empty string is returned if no string is extracted or len is less than 1.

- 41 -

 See

Refer to "String Functions and Operators" under "The SQL Language" in the PostgreSQL Documentation for information on SUBSTRING.

 Example

In the following example, part of the string "ABCDEFG" is extracted:

SELECT SUBSTR('ABCDEFG',3,4) "Substring" FROM DUAL;

 Substring

 CDEF

(1 row)

SELECT SUBSTR('ABCDEFG',-5,4) "Substring" FROM DUAL;

 Substring

(1 row)

7.4.3 NVL
Description

Returns a substitute value when a value is NULL.

Syntax

NVL(expr1, expr2)

General rules

- NVL returns a substitute value when the specified value is NULL. When expr1 is NULL, expr2 is returned. When expr1 is not NULL,
expr1 is returned.

- Specify the same data types for expr1 and expr2. However, if a constant is specified in expr2, and the data type can also be converted by
expr1, different data types can be specified. When this happens, the conversion by expr2 is done to suit the data type in expr1, so the
value of expr2 returned when expr1 is a NULL value will be the value converted in the data type of expr1.

- When specifying literals, refer to "Table A.1 Data type combinations that contain literals and can be converted implicitly" in "A.3
Implicit Data Type Conversions" for information on the data types that can be converted.

 Example

In the following example, "IS NULL" is returned if the value of col1 in table t1 is a NULL value.

SELECT col2, NVL(col1,'IS NULL') "nvl" FROM t1;

 col2 | nvl

------+---------

 aaa | IS NULL

(1 row)

7.5 Package Reference
A "package" is a group of features, brought together by schemas, that have a single functionality, and are used by calling from PL/pgSQL.

The following packages are supported:

- 42 -

- DBMS_ALERT

- DBMS_ASSERTION

- DBMS_OUTPUT

- DBMS_PIPE

- DBMS_RANDOM

- DBMS_UTILITUY

- UTL_FILE

- DBMS_SQL

To call each feature from PL/pgSQL, use the PERFORM or SELECT statement and qualify the feature name with the package name. For
more information on the calling format, refer to the feature-specific description for each package.

In the following, explain DBMS_SQL among the supported packages. For other packages, refer to the README stored in the installation
location.

 See

For packages other than DBMS_SQL, refer to the following file.

fujitsuEnterprisePostgresInstallDir/share/doc/extension/README.asciidoc

7.5.1 DBMS_SQL
Overview

Dynamic SQL can be executed from PL/pgSQL.

Features

Feature Description

BIND_VARIABLE Sets values in the host variable within the SQL statement.

CLOSE_CURSOR Closes the cursor.

COLUMN_VALUE
Retrieves the value of the column in the select list extracted with
FETCH_ROWS.

DEFINE_COLUMN
Defines the column from which values are extracted and the storage
destination.

EXECUTE Executes SQL statements.

FETCH_ROWS Positions the specified cursor at the next row and extracts values from the row.

OPEN_CURSOR Opens a new cursor.

PARSE Parses SQL statements.

 Note

- In DBMS_SQL, the data types supported in dynamic SQL are limited, and therefore the user must consider this. The supported data
types are:

- INTEGER

- DECIMAL

- NUMERIC

- REAL

- 43 -

- DOUBLE PRECISION

- CHAR(*1)

- VARCHAR(*1)

- NCHAR(*1)

- NCHAR VARYING(*1)

- TEXT

- DATE

- TIMESTAMP WITHOUT TIME ZONE

- TIMESTAMP WITH TIME ZONE

- INTERVAL(*2)

- SMALLINT

- BIGINT

*1:
The host variables with CHAR, VARCHAR, NCHAR, and NCHAR VARYING data types are treated as TEXT, to match the string
function arguments and return values. Refer to "String Functions and Operators" in "Functions and Operators" in "The SQL
Language" in the PostgreSQL Documentation for information on string functions.
When specifying the arguments of the features compatible with Oracle databases NVL and/or DECODE, use CAST to convert the
data types of the host variables to ensure that data types between arguments are the same.

*2:
When using COLUMN_VALUE to obtain an INTERVAL type value specified in the select list, use an INTERVAL type variable
with a wide range such as when no interval qualifier is specified, or with a range that matches that of the variable in the select list.
If an interval qualifier variable with a narrow range is specified, then the value within the interval qualifier range will be obtained,
but an error that the values outside the range have been truncated will not occur.

 Example

This example illustrates where a value expression that returns an INTERVAL value is set in the select list and the result is received
with COLUMN_VALUE. Note that the SQL statement operation result returns a value within the INTERVAL DAY TO SECOND
range.

[Bad example]

Values of MINUTE, and those after MINUTE, are truncated, because the variable(v_interval) is INTERVAL DAY TO HOUR.

 v_interval INTERVAL DAY TO HOUR;

...

 PERFORM DBMS_SQL.PARSE(cursor, 'SELECT CURRENT_TIMESTAMP - ''2010-01-01'' FROM DUAL', 1);

...

 SELECT value INTO v_interval FROM DBMS_SQL.COLUMN_VALUE(cursor, 1, v_interval);

 result:1324 days 09:00:00

[Good example]

By ensuring that the variable(v_interval) is INTERVAL, the values are received correctly.

 v_interval INTERVAL;

...

 PERFORM DBMS_SQL.PARSE(cursor, 'SELECT CURRENT_TIMESTAMP - ''2010-01-01'' FROM DUAL', 1);

...

 SELECT value INTO v_interval FROM DBMS_SQL.COLUMN_VALUE(cursor, 1, v_interval);

 result:1324 days 09:04:37.530623

- 44 -

Syntax

{ BIND_VARIABLE(cursor, varName, val [, len])

| CLOSE_CURSOR(cursor)

| COLUMN_VALUE(cursor, colPos, varName)

| DEFINE_COLUMN(cursor, colPos, varName [, len])

| EXECUTE(cursor)

| FETCH_ROWS(cursor)

| OPEN_CURSOR([parm1])

| PARSE(cursor, sqlStmt, parm1 [, parm2, parm3, parm4])

}

7.5.1.1 Description
This section explains each feature of DBMS_SQL.

BIND_VARIABLE

- BIND_VARIABLE sets values in the host variable within the SQL statement.

- Specify the cursor number to be processed.

- Specify the name of the host variable within the SQL statement using a string for the host variable name.

- Specify the value set in the host variable. The data type of the host variable is the same as that of the value expression - it is implicitly
converted in accordance with its position within the SQL statement. Refer to "A.3 Implicit Data Type Conversions" for information
on implicit conversions.

- If the value is a character type, the string length is the number of characters. If the string length is not specified, the size is the total
length of the string.

- It is necessary to place a colon at the beginning of the host variable in SQL statements to identify the host variable. The colon does
not have to be added to the host variable names specified at BIND_VARIABLE. The following shows examples of host variable
names specified with SQL statements and host variable names specified with BIND_VARIABLE:

PERFORM DBMS_SQL.PARSE(cursor, 'SELECT emp_name FROM emp WHERE sal > :x', 1);

In this example, BIND_VARIABLE will be as follows:

PERFORM DBMS_SQL.BIND_VARIABLE(cursor, ':x', 3500);

Or,

PERFORM DBMS_SQL.BIND_VARIABLE(cursor, 'x', 3500);

- The length of the host variable name can be up to 30 bytes (excluding colons).

- If the data type of the set value is string, specify the effective size of the column value as the fourth argument.

 Example

If the data type of the value to be set is not a string:

PERFORM DBMS_SQL.BIND_VARIABLE(cursor, ':NO', 1);

If the data type of the value to be set is a string:

PERFORM DBMS_SQL.BIND_VARIABLE(cursor, ':NAME', h_memid, 5);

CLOSE_CURSOR

- CLOSE_CURSOR closes the cursor.

- 45 -

- Specify the cursor number to be processed.

- The value returned is a NULL value.

 Example

cursor := DBMS_SQL.CLOSE_CURSOR(cursor);

COLUMN_VALUE

- COLUMN_VALUE retrieves the value of the column in the select list extracted with FETCH_ROWS.

- Specify the cursor number to be processed.

- Specify the position of the column of the select list in the SELECT statement. The position of the first column is 1.

- Specify the destination variable name.

- Use a SELECT statement to obtain the values of the value, column_error, and actual_length columns.

- The value column returns the value of the column specified at the column position. The data type of the variable name must match
that of the column. If the data type of the column in the SELECT statement specified in PARSE is not compatible with DBMS_SQL,
use CAST to convert to a compatible data type.

- The data type of the column_error column is NUMERIC. If the column value could not be set correctly in the value column, a value
other than 0 will be returned:
22001: The extracted string has been truncated
22002: The extracted value contains a NULL value

- The data type of the actual_length column is INTEGER. If the extracted value is a character type, the number of characters will be
returned (if the value was truncated, the number of characters prior to the truncation will be returned), otherwise, the number of bytes
will be returned.

 Example

When retrieving the value of the column, the error code, and the actual length of the column value:

SELECT value, column_error, actual_length INTO v_memid, v_col_err, v_act_len FROM

DBMS_SQL.COLUMN_VALUE(cursor, 1, v_memid);

When retrieving just the value of the column:

SELECT value INTO v_memid FROM DBMS_SQL.COLUMN_VALUE(cursor, 1, v_memid);

DEFINE_COLUMN

- DEFINE_COLUMN defines the column from which values are extracted and the storage destination.

- Specify the cursor number to be processed.

- Specify the position of the column in the select list in the SELECT statement. The position of the first column is 1.

- Specify the destination variable name. The data type should be match with the data type of the column from which the value is to
be extracted. If the data type of the column in the SELECT statement specified in PARSE is not compatible with DBMS_SQL, use
CAST to convert to a compatible data type.

- Specify the maximum number of characters of character type column values.

- If the data type of the column value is string, specify the effective size of the column value as the fourth argument.

- 46 -

 Example

When the data type of the column value is not a string:

PERFORM DBMS_SQL.DEFINE_COLUMN(cursor, 1, v_memid);

When the data type of the column value is a string:

PERFORM DBMS_SQL.DEFINE_COLUMN(cursor, 1, v_memid, 10);

EXECUTE

- EXECUTE executes SQL statements.

- Specify the cursor number to be processed.

- The return value is an INTEGER type, is valid only with INSERT statement, UPDATE statement, and DELETE statement, and is
the number of rows processed. Anything else is invalid.

 Example

ret := DBMS_SQL.EXECUTE(cursor);

FETCH_ROWS

- FETCH_ROWS positions at the next row and extracts values from the row.

- Specify the cursor number to be processed.

- The return value is an INTEGER type and is the number of rows extracted. 0 is returned if all are extracted.

- The extracted information is retrieved with COLUMN_VALUE.

 Example

LOOP

 IF DBMS_SQL.FETCH_ROWS(cursor) = 0 THEN

 EXIT;

 END IF;

...

END LOOP;

OPEN_CURSOR

- OPEN_CURSOR opens a new cursor.

- The parameter is used for compatibility with Oracle databases only, and is ignored by FUJITSU Enterprise Postgres. An INTEGER
type can be specified, but it will be ignored. If migrating from an Oracle database, specify 1.

- Close unnecessary cursors by executing CLOSE_CURSOR.

- The return value is an INTEGER type and is the cursor number.

- 47 -

 Example

cursor := DBMS_SQL.OPEN_CURSOR();

PARSE

- PARSE analyzes dynamic SQL statements.

- Specify the cursor number to be processed.

- Specify the SQL statement to be parsed.

- Parameters 1, 2, 3, and 4 are used for compatibility with Oracle databases only, and are ignored by FUJITSU Enterprise Postgres.
If you are specifying values anyway, specify the following:
- Parameter 1 is an INTEGER type. Specify 1.
- Parameters 2 and 3 are TEXT types. Specify NULL.
- Parameter 4 is a BOOLEAN type. Specify TRUE.
If migrating from an Oracle database, the specified values for parameters 2, 3, and 4 do not need to be changed.

- Add a colon to the beginning of host variables in SQL statements.

- The DDL statement is executed when PARSE is issued. EXECUTE is not required for the DDL statement.

- If PARSE is called again for opened cursors, the content in the data regions within the cursors is reset, and the SQL statement is
parsed anew.

 Example

PERFORM DBMS_SQL.PARSE(cursor, 'SELECT memid, memnm FROM member WHERE memid = :NO', 1);

7.5.1.2 Example
This section explains the flow of DBMS_SQL and provides an example.

- 48 -

Flow of DBMS_SQL

Example

CREATE FUNCTION smp_00()

RETURNS INTEGER

AS $$

DECLARE

 str_sql VARCHAR(255);

 cursor INTEGER;

 h_smpid INTEGER;

 v_smpid INTEGER;

 v_smpnm VARCHAR(20);

 v_smpage INTEGER;

 errcd INTEGER;

- 49 -

 length INTEGER;

 ret INTEGER;

BEGIN

 str_sql := 'SELECT smpid, smpnm, smpage FROM smp_tbl WHERE smpid < :H_SMPID ORDER BY smpid';

 h_smpid := 3;

 v_smpid := 0;

 v_smpnm := '';

 v_smpage := 0;

 cursor := DBMS_SQL.OPEN_CURSOR();

 PERFORM DBMS_SQL.PARSE(cursor, str_sql, 1);

 PERFORM DBMS_SQL.BIND_VARIABLE(cursor, ':H_SMPID', h_smpid);

 PERFORM DBMS_SQL.DEFINE_COLUMN(cursor, 1, v_smpid);

 PERFORM DBMS_SQL.DEFINE_COLUMN(cursor, 2, v_smpnm, 10);

 PERFORM DBMS_SQL.DEFINE_COLUMN(cursor, 3, v_smpage);

 ret := DBMS_SQL.EXECUTE(cursor);

 loop

 if DBMS_SQL.FETCH_ROWS(cursor) = 0 then

 EXIT;

 end if;

 SELECT value,column_error,actual_length INTO v_smpid,errcd,length FROM

DBMS_SQL.COLUMN_VALUE(cursor, 1, v_smpid);

 RAISE NOTICE '--';

 RAISE NOTICE '--';

 RAISE NOTICE 'smpid = %', v_smpid;

 RAISE NOTICE 'errcd = %', errcd;

 RAISE NOTICE 'length = %', length;

 SELECT value,column_error,actual_length INTO v_smpnm,errcd,length FROM

DBMS_SQL.COLUMN_VALUE(cursor, 2, v_smpnm);

 RAISE NOTICE '--';

 RAISE NOTICE 'smpnm = %', v_smpnm;

 RAISE NOTICE 'errcd = %', errcd;

 RAISE NOTICE 'length = %', length;

 select value,column_error,actual_length INTO v_smpage,errcd,length FROM

DBMS_SQL.COLUMN_VALUE(cursor, 3, v_smpage);

 RAISE NOTICE '--';

 RAISE NOTICE 'smpage = %', v_smpage;

 RAISE NOTICE 'errcd = %', errcd;

 RAISE NOTICE 'length = %', length;

 RAISE NOTICE '';

 end loop;

 cursor := DBMS_SQL.CLOSE_CURSOR(cursor);

 RETURN 0;

END;

$$ LANGUAGE plpgsql;

- 50 -

Chapter 8 Application Connection Switch Feature
The application connection switch feature enables automatic connection to the target server when there are multiple servers with redundant
configurations.

When using this feature, specify the primary server and secondary server as the connected servers in the application connection information.
A standby server can optionally be prioritized over the primary server as the target server.

If an application connection switch occurs, explicitly close the connection and then reestablish the connection or reexecute the application.
Refer to "Errors when an Application Connection Switch Occurs and Corresponding Actions" of the relevant client interface for information
on how to confirm the switch.

8.1 Connection Information for the Application Connection Switch
Feature

To use the application connection switch feature, set the information shown below when connecting the database.

IP address or host name

Specify the IP address or host name that will be used to configure the database multiplexing system.

Port number

A port number used by each database server to listen for connections from applications.
In each client interface, multiple port numbers can be specified, however in the format shown below, for example:

host1,host2:port2

JDBC

If only one port number is specified, it will be assumed that host1: 27500 (the default value) and host2:port2 were specified.
Omit all port numbers, or specify only one per server.

Others

If only one port number is specified, it will be assumed that the same port is used for all the hosts.

Target server

From the specified connection destination server information, specify the selection sequence of the servers to which the application will
connect. The values specified for the target server have the meanings shown below. If a value is omitted, "any" will be assumed.

Primary server

The primary server is selected as the connection target from the specified "IP addresses or host names". Specify this to perform tasks
that can be performed only on the primary server, such as applications in line with updates, or management tasks such as REINDEX
and VACUUM.

Standby server

The standby server is selected as the connection target from the specified "IP addresses or host names". On standby server, the update
will always fail. If the target server is not standby, the JDBC driver will throw an error stating that it is unable to find a server with
the specified targetServerType.

Priority given to a standby server

The standby server is selected preferentially as the connection target from the specified "IP addresses or host names". If there is no
standby server, the application will connect to the primary server.

Any

This method is not recommended in database multiplexing systems. This is because, although the connection destination server is
selected in the specified sequence from the specified "IP addresses or host names", if the server that was successfully connected to
first is the standby server, the write operations will always fail.

The table below shows the server selection order values to set for each driver:

- 51 -

Server selection order JDBC drivers Other drivers

Primary server "primary"(*1)
"read-write"(*1)

"primary"(*2)

Standby server "secondary"(*2)
"standby"

"read-only"(*2)

Priority given to a standby server "preferSecondary"(*2) "prefer-standby"

Any "any" "any"

*1: The primary server whose default transaction mode is read-only is not selected.

*2: The primary server whose default transaction mode is read-only is also selected.

SSL server certificate Common Name (CN)

To perform SSL authentication by creating the same server certificate for each server in a multiplexing system, specify the SSL server
certificate Common Name (CN) in this parameter. Accordingly, SSL authentication using the CN can be performed without having to
consider the names of the multiple servers contained in the multiplexing system.

8.2 Using the Application Connection Switch Feature
This section explains how to set the connection destination server using the application connection switch feature.

Of the parameters used as connection information for each client interface, only the parameters specific to the application connection switch
feature are explained here. Refer to "Setup" and "Connecting to the Database" for information on the other parameters of each client
interface.

8.2.1 Using the JDBC Driver
Set the following information in the connection string of the DriverManager class, or in the data source.

Table 8.1 Information to be set

Argument Explanation

host1
host2

Specify the IP address or host name.

port1
port2

Specify the port number for the connection.
The port number can be omitted. If omitted, the default is 27500.

database_name Specify the database name.

targetServerType Specify the selection sequence of the servers to which the application will connect.
Refer to "Target server" for details.

sslmode Specify this to encrypt communications. By default, this is disabled. The setting values for sslmode are
as follows:

disable: Connect without SSL

require: Connect always with SSL

verify-ca: Connect with SSL, using a certificate issued by a trusted CA (*1)

verify-full: Connect with SSL, using a certificate issued by a trusted CA to verify if the server host
name matches the certificate (*1)

sslservercertcn This parameter is enabled only to perform SSL authentication (sslmode=verify-full).

Specify the server certificate CN. If this is omitted, the value will be null, and the server certificate CN
will be authenticated using the host name specified in host.

*1: If specifying either "verify-ca" or "verify-full", the CA certificate file can be specified using connection string sslrootcert.

- 52 -

When using Driver Manager

Specify the following URL in the API of the DriverManager class:

jdbc:postgresql://host1[:port1],host2[:port2]/dbName[?targetServerType={primary | secondary|

preferSecondary | any}][&sslmode=verify-

full&sslrootcert=cACertificateFile&sslservercertcn=targetServerCertificateCN]

- If the target server is omitted, the default value "any" is used.

- When using IPV6, specify the host in the "[host]" (with square brackets) format.

[Example]

jdbc:postgresql://[2001:Db8::1234]:27500,192.168.1.1:27500/dbName

When using the data source

Specify the properties of the data source in the following format:

source.setServerName("host1[:port1],host2[:port2]");

source.setTargetServerType("primary");

source.setSslmode("verify-full");

source.setSslrootcert("cACertificateFile");

source.setSslservercertcn("targetServerCertificateCN");

- If the port number is omitted, the value specified in the portNumber property will be used. Also, if the portNumber property is
omitted, the default is 27500.

- If the target server is omitted, the value will be "any".

- When using IPV6, specify the host in the "[host]" (with square brackets) format.

[Example]

source.setServerName("[2001:Db8::1234]:27500,192.168.1.1:27500");

 Note

If using the connection parameter loginTimeout, the value will be applied for the time taken attempting to connect to all of the specified
hosts.

8.2.2 Using the ODBC Driver
Set the following information in the connection string or data source.

Table 8.2 Information to be set

Parameter Explanation

Servername Specify IP address 1 and IP address 2, or the host name, using a comma as the delimiter. Based
on ODBC rules, it is recommended to enclose the whole string containing comma delimiters
with {}.

Format: {host1,host2}

Port Specify the connection destination port numbers, using a comma as the delimiter.
Based on ODBC rules, it is recommended to enclose the whole string containing comma
delimiters with {}.

Format: {port1,port2}

- 53 -

Parameter Explanation

Specify the port number corresponding to the IP address or host specified for the nth
Servername as the nth Port.

The port number can be omitted. If omitted, the default is 27500.

If n server names are specified, and m ports are specified then there will be error reported. The
only exceptions are where m=n or m=1. In case only one port is specified, then the same is
applied for all the hosts.

target_session_attrs Specify the selection sequence of the servers to which the application will connect.
Refer to "Target server" for details.

SSLMode Specify this to encrypt communications. By default, this is disabled. The setting values for
SSLMode are as follows:

disable: Connect without SSL

allow: Connect without SSL, and if it fails, connect with SSL

prefer: Connect with SSL, and if it fails, connect without SSL

require: Connect always with SSL

verify-ca: Connect with SSL, using a certificate issued by a trusted CA (*1)

verify-full: Connect with SSL, using a certificate issued by a trusted CA to verify if the server
host name matches the certificate (*1)

SSLServerCertCN This parameter is enabled only to perform SSL authentication (SSLMode=verify-full).

Specify the server certificate CN. If this is omitted, the value will be null, and the server
certificate CN will be authenticated using the host name specified in Servername.

*1: If specifying either "verify-ca" or "verify-full", use the system environment variable PGSSLROOTCERT of your operating system
to specify the CA certificate file as shown below.

Example)
Variable name: PGSSLROOTCERT
Variable value: cACertificateFile

When specifying a connection string

Specify the following connection string:

...;Servername={host1,host2};Port={port1,port2};[target_session_attrs={any | read-write | read-

only | primary | standby | prefer-standby}];[SSLMode=verify-

full;SSLServerCertCN=targetServerCertificateCN]...

- When using IPV6, specify the host in the "host" format.

[Example]

Servername={2001:Db8::1234,192.168.1.1};Port={27500,27500};

When using the data source

Specify the properties of the data source in the following format:

Servername={host1,host2}

Port={port1,port2}

target_session_attrs={any | read-write | read-only | primary | standby | prefer-standby}

SSLMode=verify-full

SSLServerCertCN=targetServerCertificateCN

- 54 -

- When using IPV6, specify the host in the "host" format.

[Example]

Servername={2001:Db8::1234,192.168.1.1}

 Note

If using the connection parameter login_timeout, this value is applied for connections to each of the specified hosts. If both multiplexed
database servers have failed, the connection will time out when a time equal to double the login_timeout value elapses.

8.2.3 Using a Connection Service File
Set the connection parameters as follows.

Table 8.3 Information to be set

Parameter Explanation

host Specify the host names, using a comma as the delimiter.

hostaddr Specify IP address 1 and IP address 2, using a comma as the delimiter.

port Specify the connection destination port numbers, using a comma as the delimiter.
Specify the port number for the server specified for the nth host or hostaddr as the nth
port.

The port number can be omitted. If omitted, the default is 27500.

If n server names are specified, and m ports are specified then there will be error
reported. The only exceptions are where m=n or m=1. In case only one port is specified,
then the same is applied for all the hosts.

target_session_attrs Specify the selection sequence of the servers to which the application will connect.
Refer to "Target server" for details.

sslmode Specify this to encrypt communications. By default, this is disabled.
The setting values for sslmode are as follows:

disable: Connect without SSL

allow: Connect without SSL, and if it fails, connect with SSL

prefer: Connect with SSL, and if it fails, connect without SSL

require: Connect always with SSL

verify-ca: Connect with SSL, using a certificate issued by a trusted CA (*1)

verify-full: Connect with SSL, using a certificate issued by a trusted CA to verify if the
server host name matches the certificate (*1)

sslservercertcn This parameter is enabled only to perform SSL authentication (sslmode=verify-full).

Specify the server certificate CN. If this is omitted, the value will be null, and the server
certificate CN will be authenticated using the host name specified in host.

*1: If specifying either "verify-ca" or "verify-full", use the system environment variable PGSSLROOTCERT (connection parameter
sslrootcert) of your operating system to specify the CA certificate file as shown below.

Example)
Variable name: PGSSLROOTCERT
Variable value: cACertificateFile

- 55 -

 Note

If using the connection parameter connect_timeout, this value is applied for connections to each of the specified hosts. If both multiplexed
database servers have failed, the connection will time out when a time equal to double the connect_timeout value elapses.

 Point

If using the C Library, embedded SQL or psql commands (including other client commands that specify connection destinations), it is
recommended to use a connection service file to specify connection destinations.

In the connection service file, a name (service name) is defined as a set, comprising information such as connection destination information
and various types of tuning information set for connections. By using the service name defined in the connection service file when
connecting to databases, it is no longer necessary to modify applications when the connection information changes.

8.2.4 Using the C Library (libpq)
It is recommended that you use a connection service file. Refer to "8.2.3 Using a Connection Service File" for details.

If a connection service file will not be used, set the following information for the database connection control functions
(PQconnectdbParams, PQconnectdb, and so on) or environment variables.

Table 8.4 Information to be set

Parameter (environment
variable name)

Explanation

host(PGHOST) Specify the host names, using a comma as the delimiter.

hostaddr(PGHOSTADDR) Specify IP address 1 and IP address 2, using a comma as the delimiter.

port(PGPORT) Specify the connection destination port numbers, using a comma as the delimiter.
Specify the port number for the server specified for the nth host or hostaddr as the nth port.

The port number can be omitted. If omitted, the default is 27500.

If n server names are specified, and m ports are specified then there will be error reported.
The only exceptions are where m=n or m=1. In case only one port is specified, then the
same is applied for all the hosts.

target_session_attrs(PGTARG
ETSESSIONATTRS)

Specify the selection sequence of the servers to which the application will connect.
Refer to "Target server" for details.

sslmode(PGSSLMODE) Specify this to encrypt communications. By default, this is disabled.
The setting values for sslmode are as follows:

disable: Connect without SSL

allow: Connect without SSL, and if it fails, connect with SSL

prefer: Connect with SSL, and if it fails, connect without SSL

require: Connect always with SSL

verify-ca: Connect with SSL, using a certificate issued by a trusted CA (*1)

verify-full: Connect with SSL, using a certificate issued by a trusted CA to verify if the
server host name matches the certificate (*1)

sslservercertcn(PGXSSLSER
VERCERTCN)

This parameter is enabled only to perform SSL authentication (sslmode=verify-full).

Specify the server certificate CN. If this is omitted, the value will be null, and the server
certificate CN will be authenticated using the host name specified in host.

*1: If specifying either "verify-ca" or "verify-full", use the system environment variable PGSSLROOTCERT (connection parameter
sslrootcert) of your operating system to specify the CA certificate file as shown below.

- 56 -

Example)
Variable name: PGSSLROOTCERT
Variable value: cACertificateFile

When using URI

postgresql://host1[:port1],host2[:port2][,...]/database_name

[?target_session_attrs={read-write | read-only | primary | standby | prefer-standby | any }]

- When using IPV6, specify the host in the "[host]" (with square brackets) format.

[Example]

postgresql://postgres@[2001:Db8::1234]:27500,192.168.1.1:27500/database_name

When using key-value

host=host1[,host2] port=port1[,port2] user=user1 password=pwd1 dbname=mydb

[target_session_attrs={read-write | read-only | primary | standby | prefer-standby | any }]

- When using IPV6, specify the host in the "host" format.

[Example]

host=2001:Db8::1234,192.168.1.1 port=27500,27500

 Note

If using the connection parameter connect_timeout, this value is applied for connections to each of the specified hosts. If both multiplexed
database servers have failed, the connection will time out when a time equal to double the connect_timeout value elapses.

 Information

If using a password file (.pgpass), describe the entries matching each server.

- Example 1:

host1:port1:dbname:user:password

host2:port2:dbname:user:password

- Example 2:

*:port:dbname:user:password

8.2.5 Using Embedded SQL
It is recommended that you use a connection service file. Refer to "8.2.3 Using a Connection Service File" for details.

 Point

If using a connection service file, either of the following methods is available:

- Set the service name as a string literal or host variable, as follows:

tcp:postgresql://?service=my_service

- 57 -

- Set the service name in the environment variable PGSERVICE, and use CONNECT TO DEFAULT

If a connection service file will not be used, use a literal or variable to specify the connection destination server information for target in
the SQL statement below:

EXEC SQL CONNECT TO target [AS connection-name] [USER user-name];

Method used

dbname@host1,host2[:[port1][,port2]]

tcp:postgresql://host1,host2[:[port1][,port2]] [/dbname] [?target_session_attrs={read-write |

read-only | primary | standby | prefer-standby | any}][&sslmode=verify-

full&sslservercertcn=targetServerCertificateCN]

- The above format cannot be specified directly without using a literal or variable.

Table 8.5 Information to be set

Argument Explanation

host1
host2

Specify the IP address or host name. IPv6 format addresses cannot be specified.

port1
port2

Specify the connection destination port numbers, using a comma as the delimiter.
The port number can be omitted. If omitted, the default is 27500.

dbname Specify the database name.

target_session_attrs Specify the selection sequence of the servers to which the application will connect.
Refer to "Target server" for details.

sslmode Specify this to encrypt communications. By default, this is disabled. The setting values for
sslmode are as follows:

disable: Connect without SSL

allow: Connect without SSL, and if it fails, connect with SSL

prefer: Connect with SSL, and if it fails, connect without SSL

require: Connect always with SSL

verify-ca: Connect with SSL, using a certificate issued by a trusted CA (*1)

verify-full: Connect with SSL, using a certificate issued by a trusted CA to verify if the server
host name matches the certificate (*1)

sslservercertcn This parameter is enabled only to perform SSL authentication (sslmode=verify-full).

Specify the server certificate CN. If this is omitted, the value will be null, and the server
certificate CN will be authenticated using the host name specified in host.

*1: If specifying either "verify-ca" or "verify-full", use the system environment variable PGSSLROOTCERT (connection parameter
sslrootcert) of your operating system to specify the CA certificate file as shown below.

Example)
Variable name: PGSSLROOTCERT
Variable value: cACertificateFile

 Point

Environment variables can also be used. Refer to "8.2.4 Using the C Library (libpq)" for information on environment variables.

- 58 -

 Note

If using the connection parameter connect_timeout, this value is applied for connections to each of the specified hosts. If both multiplexed
database servers have failed, the connection will time out when a time equal to double the connect_timeout value elapses.

8.2.6 Using the psql Command
It is recommended that you use a connection service file. Refer to "8.2.3 Using a Connection Service File" for details.

If a connection service file will not be used, specify the following information in the psql command option/environment variable.

Table 8.6 Information to be set

Option (environment
variable)

Explanation

-h/--host(PGHOST/
PGHOSTADDR)

Specify IP address 1 and IP address 2, or the host name, using a comma as the delimiter.
This can also be specified for the environment variable PGHOST or PGHOSTADDR.

-p/--port(PGPORT) Specify the connection destination port numbers, using a comma as the delimiter.
This can also be specified for the environment variable PGPORT.

Specify the port number corresponding to the IP address specified for the nth -h option as
the nth -p option.

The port number can be omitted. If omitted, the default is 27500.

If n -h options are specified, and m -p options are specified then there will be error reported.
The only exception is where m=n or m=1. In case only one port is specified, then the same
is applied for all the hosts.

(PGTARGETSESSIONATTR
S)

Specify the selection sequence of the servers to which the application will connect.
Refer to "Target server" for details.

(PGSSLMODE) Specify this to encrypt communications. By default, this is disabled.
The setting values for PGSSLMODE are as follows:

disable: Connect without SSL

allow: Connect without SSL, and if it fails, connect with SSL

prefer: Connect with SSL, and if it fails, connect without SSL

require: Connect always with SSL

verify-ca: Connect with SSL, using a certificate issued by a trusted CA (*1)

verify-full: Connect with SSL, using a certificate issued by a trusted CA to verify if the
server host name matches the certificate (*1)

(PGXSSLSERVERCERTCN) This environment variable is enabled only to perform SSL authentication
(PGSSLMODE=verify-full).

Specify the server certificate CN. If this is omitted, the value will be null, and the server
certificate CN will be authenticated using the host name specified in host.

*1: If specifying either "verify-ca" or "verify-full", use the system environment variable PGSSLROOTCERT (connection parameter
sslrootcert) of your operating system to specify the CA certificate file as shown below.

Example)
Variable name: PGSSLROOTCERT
Variable value: cACertificateFile

- 59 -

 Note

If using the connection parameter connect_timeout, this value is applied for connections to each of the specified hosts. If both multiplexed
database servers have failed, the connection will time out when a time equal to double the connect_timeout value elapses.

 Information

Use the same method as for psql commands to specify connection destination server information for other client commands used to specify
connection destinations.

- 60 -

Chapter 9 Performance Tuning
This chapter explains how to tune application performance.

9.1 Enhanced Query Plan Stability
FUJITSU Enterprise Postgres estimates the cost of query plans based on SQL statements and database statistical information, and selects
the least expensive query plan. However, like other databases, FUJITSU Enterprise Postgres does not necessarily select the most suitable
query plan. For example, it may suddenly select unsuitable query plan due to changes in the data conditions.

In mission-critical systems, stable performance is more important than improved performance, and changes in query plans case to be
avoided. In this situation, by stabilizing the SQL statement query plan so that it does not change, deterioration of the application performance
is suppressed.

9.1.1 Optimizer Hints
This section explains the basic feature content of the optimizer hint (pg_hint_plan).

Refer to the open-source software webpage for information on pg_hint_plan.

In FUJITSU Enterprise Postgres, the optimizer hints can be specified in all application interfaces.

Description

You can specify a query plan in each SQL statement.

List of Features

The main query plans that can be specified using this feature are as follows:

- Query methods

- Join methods

- Join sequences

Query methods

Specify which method to use to query the specified table.

The main features are as follows:

- SeqScan (tableName)

- BitMapScan (tableName [indexName ...])

- IndexScan (tableName [indexName ...])

- IndexOnlyScan (tableName [indexName ...])

 Note

- If the specified index does not exist, or is not related to the search condition column specified in the WHERE clause, for example,
SeqScan will be used.

- Even if IndexOnlyScan is specified, IndexScan may be used if it is necessary to access the table because a row was updated, for
example.

- If multiple query methods were specified for the same table, the method specified last will be used.

- 61 -

Join methods

Specify the join method.

The main features are as follows:

- NestLoop (tableName tableName [tableName ...])

- MergeJoin (tableName tableName [tableName ...])

- HashJoin (tableName tableName [tableName ...])

 Note

- These cannot be specified for view tables and subqueries.

- If multiple methods were specified for the same table combination, the method specified last will be used.

Join sequences

The tables will be joined in the specified table sequence.

Specify the information using the following method:

- Leading ((table table))

The method used to specify [table] is as follows:

table = tableName or (table table)

 Note

If multiple sequences were specified for the same table combination, the sequence specified last will be used.

Usage method

The use of this feature is explained below.

Method used to define this feature

Define this feature by specifying the format (block comment) " /*+ ... */".

- To specify hint clauses in each SELECT statement, for example when there are multiple SELECT statements in the SQL statement,
define all hint clauses in the first block comment.

 Example

Specifying hint clauses for the emp table and the dept table

WITH /*+ IndexScan(emp emp_age_index) IndexScan(dept dept_deptno_index) */ age30

AS (SELECT * FROM emp WHERE age BETWEEN 30 AND 39)

SELECT * FROM age30, dept WHERE age30.deptno = dept.deptno;

- To specify separate hint clauses for the same object in the SQL statement, define aliases in each object, and then specify hint clauses
for those aliases.

 Example

Specifying separate hint clauses for the emp table

- 62 -

WITH /*+ SeqScan(ta) IndexScan(tb) */ over100

AS (SELECT empno FROM emp ta WHERE salary > 1000000)

SELECT * FROM emp tb, over100 WHERE tb.empno = over100.empno AND tb.age < 30

- When using embedded SQL in C, the locations in which the hint clause block comment is specified are restricted. Refer to "5.4.2
Compiling Applications" for details.

Usage notes

- If a hint clause was specified in multiple block comments in the SQL statement, the hint clause specified in the second block comment
and thereafter will be ignored.

- If characters other than those listed below appear before the hint clause in the SQL statement, they will be invalid even for hint clause
block comments.

- Space, tab, line feed

- Letter (uppercase and lowercase), number

- Underscore, comma

- Brackets ()

9.1.2 Locked Statistics
This section explains the basic feature content for locked statistics (pg_dbms_stats).

Refer to the open-source software webpage for information on pg_dbms_stats.

Description

Locks the statistics.

By using this feature to lock the statistics for performance obtained in job load testing in an environment that simulates a production
environment, performance degradation caused by changes to the query plan after go-live can be suppressed.

Additionally, by using the export and import features, statistics that were checked in the test environment can also be reproduced in the
production environment.

List of Features

The main features that can be specified using this feature are as follows.

[Features]

Feature Details Description

Lock/unlock of the statistics
Lock

Locks the statistics so that the currently selected query plan remains
selected.

Unlock Unlocks the statistics.

Backup/restore of the statistics Backup Backs up the current statistics.

Restore
Restores the statistics to the point when they were backed up, and then
locks them.

Purge Deletes backups that are no longer necessary.

Backup/restore using external
files

Export Outputs the current statistics to an external file (binary format).

Import
Reads the statistics from an external file created by the export feature,
and then locks them.

[Target object]

- 63 -

Target resource Range of feature

Database In the database

Schema In the schema

Table In the table

Column ID column

Usage method

The use of this feature is explained below.

Method used to specify this feature

Specify this feature as an SQL function.

The methods used to specify the main features are shown in the table below.

Feature Object Function specified

Lock Database dbms_stats.lock_database_stats()

Schema dbms_stats.lock_schema_stats('schemaName')

Table dbms_stats.lock_table_stats('schemaName.tableName')

Unlock Database dbms_stats.unlock_database_stats()

Schema dbms_stats.unlock_schema_stats('schemaName')

Table dbms_stats.unlock_table_stats('schemaName.tableName')

Import Database dbms_stats.import_database_stats('fullPathOfExportedFile')

Backup Database dbms_stats.backup_database_stats('commentUsedForIdentification')

Restore Database [Format 1]
dbms_stats.restore_database_stats('timestamp')

[Timestamp]
Specify in the same format as the time column of the backup_history table.
Backups earlier than the specified time will be restored.

[Format 2]
dbms_stats.restore_stats(backupId)

[Backup ID]
Specify a value in the id column of the backup_history table. The specified
backup will be restored.

Purge Backup dbms_stats.purge_stats(backupId,flagUsedForDeletion)

[Backup ID]
Specify a value in the id column of the backup_history table.

[Flag used for deletion]
true: The target backup is forcibly deleted.
false: The target backup is deleted only when there are also backups for the
entire database.

Remark 1: The export feature is executed using the COPY statement, not the SQL function.

 Example

Example 1: Locking the statistics of the entire database

- 64 -

userdb=# SELECT dbms_stats.lock_database_stats();

 lock_database_stats

 tbl1

 tbl1_pkey

Note that the locked information can be referenced as follows:

userdb=# select relname from dbms_stats.relation_stats_locked;

 relname

 tbl1

 tbl1_pkey

Example 2: Unlocking the statistics of the entire database

userdb=# SELECT dbms_stats.unlock_database_stats();

 unlock_database_stats

 tbl1

 tbl1_pkey

Example 3: Backing up the statistics of the entire database

userdb=# SELECT dbms_stats.backup_database_stats('backup1');

 backup_database_stats

 1

Note that the backed up statistics can be referenced as follows:

userdb=# select id,comment,time,unit from dbms_stats.backup_history;

 id | comment | time | unit

 ----+----------+-------------------------------+------

 1 | backup1 | 2014-03-04 11:08:40.315948+09 | d

The ID:1 backup "backup1" is obtained for each database at "2014-03-04 11:08:40.315948+09".
[Meaning of unit] d: database s: schema t: table c: column

Example 4: Exporting the statistics of the entire database

$ psql -d userdb -f export.sql

BEGIN

COMMIT

export.sql is the file in which the COPY statement is defined.
Refer to "export_effective_stats-<x>.sql_sample" for information on the content of the COPY statement. "<x>" indicates the product
version.

"export_effective_stats-<x>.sql_sample" is stored as follows:
fujitsuEnterprisePostgresInstallDir/share/doc/extension

Example 5: Importing the statistics of the entire database

$ psql -d userdb -c "SELECT dbms_stats.import_database_stats ('$PWD/export_stats.dmp')"

 import_database_stats

- 65 -

(1 row)

Usage notes

- You must run the ANALYZE command once for the target tables of this feature. If the ANALYZE command is not run, the statistics
cannot be locked.
Refer to "SQL Commands" in "Reference" in the PostgreSQL Documentation for information on the ANALYZE command.

- To use this feature to delete an object that has locked the statistics, use the unlock feature to delete the object lock information first.

- This feature does not specify the statistics value directly. It reproduces the status that has actually occurred. For this reason, if the text
format is specified in the COPY statement when the export occurs, restore will not be possible. Always use the binary format when
performing the export.

- 66 -

Chapter 10 Scan Using a Vertical Clustered Index (VCI)
This chapter describes scanning using a VCI.

10.1 Operating Conditions
Faster aggregation can be achieved by using a VCI defined for all columns to be referenced.

This section describes the conditions under which a scan can use a VCI.

Whether to use VCI is determined based on cost estimation in the same way as normal indexes. Therefore, another execution plan will be
selected if it is cheaper than a VCI even if a VCI is available.

SQL statements that can use VCIs

In addition to general SELECT statements, VCIs can be used for the SQL statements below (as long as they do not specify any of the
elements listed in "SQL statements that cannot use VCIs" below):

- SELECT INTO

- CREATE TABLE AS SELECT

- CREATE MATERIALIZED VIEW ... AS SELECT

- CREATE VIEW ... AS SELECT

- COPY (SELECT ...) TO

SQL statements that cannot use VCIs

VCIs cannot be used for SQL statements that specify any of the following:

- Subquery to reference the column in which the parent query is referencing is specified

- Lock clause (such as FOR UPDATE)

- Cursor declared with WITH HOLD or scrollable

- SERIALIZABLE transaction isolation level

- Function or operator listed in "Functions and operators that do not use a VCI"

- User-defined function

Table 10.1 Functions and operators that cannot use VCIs

Classification Function/operator

Mathematical functions
and operators

Random functions random and setseed

String functions and
operators

String functions format (if the format argument is specified), regexp_matches,
regexp_split_to_array and regexp_split_to_table

Date/time functions and
operators

Date/time functions age(timestamp), current_date, current_time, current_timestamp,
localtime, localtimestamp, statement_timestamp and
transaction_timestamp

Delaying execution
functions

pg_sleep, pg_sleep_for, and pg_sleep_until

Enum support functions All functions and operators

Geometric functions and operators All functions and operators

Network address functions and operators All functions and operators

Text search functions and operators All functions and operators

XML functions All functions

- 67 -

Classification Function/operator

JSON functions and operators All functions and operators

Sequence manipulation functions All functions

Array functions and operators All functions and operators

Range functions and operators All functions and operators

Aggregate functions General-purpose
aggregate functions

array_agg, json_agg, json_object_agg, string_agg and xmlagg

Aggregate functions for
statistics

corr, covar_pop, covar_samp, regr_avgx, regr_avgy, regr_count,
regr_intercept, regr_r2, regr_slope, regr_sxx, regr_sxy and regr_syy

Ordered-set aggregate
functions

All functions

Hypothetical-set
aggregate functions

All functions

Window functions All functions

Subquery expressions Subquery expressions with its row constructor specified on the left
side

Row and array comparisons Row constructor and composite type comparisons

Set returning functions All functions

System information functions All functions

System administration functions All functions

Trigger functions All functions

Session information functions current_role and current_user

10.2 Usage
This section describes how to use a VCI in line with the following steps:

10.2.1 Designing
Design as follows before using a VCI.

- Execution multiplicity and number of parallel processes

- 68 -

- Parameters

Execution multiplicity and number of parallel processes

Determine the maximum number of SQL statements that can be executed simultaneously and the number of parallel processes based
on the number of CPU cores that can be allocated for scans that use VCI to perform aggregate processing. Design in advance the
multiplicity of SQL statements for executing scans that use VCI and the number of parallel processes for scans that use VCI.

For example, if the number of CPUs that can be allocated is 32 cores, then the maximum number of SQL statements that can be executed
simultaneously is 8 and the number of parallel processes is 4.

 Note

A temporary file is created in /dev/shm or in a directory specified for the vci.smc_directory parameter as the dynamic shared memory
for each SQL statement during a scan using a VCI.

Ensure that this directory has sufficient space to meet the memory requirements estimated for the execution multiplicity and number of
parallel processes of SQL statements (refer to "Memory used per scanning" in "VCI Memory Requirements" in the Installation and
Setup Guide for Server for details). If it does not have sufficient space when a scan is performed, SQL statements will return errors due
to the insufficient memory.

Parameters

The VCI parallel scan feature cannot be used for setting parameters immediately after creating an instance.

Therefore, set the parameters below based on the values determined in "Execution multiplicity and number of parallel processes of SQL
statements" above.

Parameter name Description Default Value index

vci.max_parallel_degree Maximum number of VCI parallel
processes (background processes)
to be used per SQL statement.

0 Specify the number of
parallel processes.

vci.smc_directory Directory name in which a
temporary file is created as the
dynamic shared memory during a
scan using a VCI.

/dev/shm Specify a directory that has
enough free space for the
memory used for each query
during the scan.

max_worker_processes Maximum number of background
processes that the system supports.

8 Add the value of the
maximum number of SQL
statements that can be
executed simultaneously for
scans that use VCI multiplied
by vci.max_parallel_degree.

 See

Refer to "Parameters" in the Operation Guide for information on the details of and how to set the parameters.

10.2.2 Checking
Execute the SQL statement with "EXPLAIN ANALYZE" to check the following:

- If a VCI was used
"Custom Scan (VCI...)" is displayed in the plan if a VCI was used.

- Number of parallel processes
The number of parallel processes when the SQL statement is executed is displayed in "Allocated Workers". Check that it is running the
designed number of parallel processes.

- 69 -

- Response
Check if the execution time displayed in "Execution time" is as estimated.

The following shows an example of the output result of EXPLAIN ANALYZE:

EXPLAIN ANALYZE SELECT COUNT(*) FROM test WHERE x > 10000;

 QUERY PLAN

--

Custom Scan (VCI Aggregate) (cost=19403.15..19403.16 rows=1 width=0) (actual time=58.505..58.506

rows=1 loops=1)

 Allocated Workers: 4

 -> Custom Scan (VCI Scan) using test_x_idx on test (cost=0.00..16925.00 rows=991261 width=0)

(never executed)

 Filter: (x > 10000)

Planning time: 0.151 ms

Execution time: 86.910 ms

(6 rows)

 Note

A cost output by the execution plan that uses a VCI may be inaccurate. A VCI works if all or part of the best execution plan when the SQL
statement was executed is replaced with an execution plan that uses a VCI. If the cost of the execution plan to be replaced is lower than a
certain value (vci.cost_threshold parameter), it will not be replaced or recalculated. Therefore, the cost of the original execution plan is
output as is.

10.2.3 Evaluating
If the results in "10.2.2 Checking" is any of the following, tune accordingly:

If a VCI is not used

- Check if the "10.1 Operating Conditions" are met.

- Check if vci.enable is set to "on".

- A VCI may not be appropriately used when statistics are outdated, such as immediately after inserting a large amount of data. In such
cases, execute the VACUUM ANALYZE statement or the ANALYZE statement.

- A VCI is not used if there is insufficient memory for VCI scan. This may occur during time-consuming transactions involving tables
for which VCIs were defined. Set vci.log_query to "on", and check if either "could not use VCI: local ROS size (%zu) exceeds limit
(%zu)" or "out of memory during local ROS generation" is output. If it is, then increase the value of the vci.max_local_ros.

Response is not as expected

Tuning may improve response. Check the following:

- If vci.max_parallel_degree is not set or is set to 0, set an appropriate value according to "10.2.1 Designing".

- If there is a margin in the CPU usage, increase the value of vci.max_parallel_degree and check again. In addition, if the value that
of max_worker_processes is lower than the maximum number of SQL statements that can be executed simultaneously for parallel
scan multiplied by vci.max_parallel_degree, increase it and check again.

10.3 Usage Notes
This section provides notes on using VCI.

- Regardless of whether VCI is used, the content of the result does not change. However, records may be returned in a different order if
the ORDER BY clause is not specified.

- To reduce resource consumption, edit postgresql.conf or use the SET statement to enable/disable vci.enable when you use this feature
only for specific times or jobs (SQL applications).

- 70 -

- The optimizer hint (pg_hint_plan) cannot be specified for a VCI. The hint clause is ignored if it is specified.

- If a plan other than VCI is specified for the optimizer hint (pg_hint_plan), a VCI may be used. Therefore, if you specify a query plan
with the hint clause, use the SET statement to set vci.enable to "off".

- The message below may be output when a scan that uses VCI is performed on the streaming replication standby server:

"LOG: recovery has paused"

"HINT: Execute pg_wal_replay_resume() to continue."

This message is output because application of the WAL to the VCI temporarily pauses due to the scan being performed.

- Even if a scan is performed using a VCI, information in the idx_scan, idx_tup_read, and idx_tup_fetch columns of the collected
statistics views, pg_stat_all_indexes and pg_stat_user_indexes, will not be updated.

- Currently, it is not possible to replace the query plan for parallel aggregation with the query plan using VCI. Therefore, if you create
a VCI on a column of a partition table and aggregate (sum () etc.) on that column, one of the following plans will be selected. Use
different setting parameters according to the situation of the target table.

- Plan of the parallel aggregations using scan methods other than VCI scan

It is selected when max_parallel_workers_per_gather is 1 or more.

explain select sum(value) from test;

 QUERY PLAN

 Finalize Aggregate (cost=99906.30..99906.31 rows=1 width=8)

 -> Gather (cost=99906.08..99906.29 rows=2 width=8)

 Workers Planned: 2

 -> Partial Aggregate (cost=98906.08..98906.09 rows=1 width=8)

 -> Parallel Append (cost=0.00..94739.83 rows=1666500 width=4)

 -> Parallel Seq Scan on test_1 (cost=0.00..43203.67 rows=833250 width=4)

 -> Parallel Seq Scan on test_2 (cost=0.00..43203.67 rows=833250 width=4)

This plan is fast when the number of records to be aggregated (number of records that hit the search conditions) is very large. This
is because the benefit of parallelizing aggregation is important, not the performance of scanning. For example, each parallel worker
will perform a sequential scan and aggregate most of the scanned records.

- Plan that aggregates VCI scan results by a single aggregator node

It is selected by setting max_parallel_workers_per_gather to 0 and not creating a query plan of parallel aggregate.

explain select sum(value) from test;

 QUERY PLAN

 Aggregate (cost=145571.00..145571.01 rows=1 width=8)

 -> Append (cost=0.00..135572.00 rows=3999600 width=4)

 -> Custom Scan (VCI Scan) using test_1_id_value_idx on test_1 (cost=0.00..57787.00

rows=1999800 width=4)

 Allocated Workers: 2

 -> Custom Scan (VCI Scan) using test_2_id_value_idx on test_2 (cost=0.00..57787.00

rows=1999800 width=4)

 Allocated Workers: 2

This plan is fast when the number of aggregated items is not large or when the size of the aggregated column is smaller than the
record size. This is because the scan performance is more important, so it is faster to aggregate the results of VCI scans of each
partition.

- Originally, if there is only one partition to be accessed, the following VCI aggregation plan can be used. Below is an example of
scanning only one partition with partition pruning.

explain select sum(value) from test where id < 1000001;

 QUERY PLAN

--

 Custom Scan (VCI Aggregate) (cost=62786.50..62786.51 rows=1 width=8)

 Allocated Workers: 2

- 71 -

 -> Custom Scan (VCI Scan) using test_1_id_value_idx on test_1 (cost=0.00..57787.00

rows=1999800 width=4)

 Filter: (id < 1000001)

However, the current planner does not try to choose VCI aggregation because it creates a plan for parallel aggregation if the table is
partitioned. So in this case, set max_parallel_workers_per_gather to 0 to force the planner to choose VCI aggregation.

- 72 -

Appendix A Precautions when Developing Applications
This appendix describes precautions when developing applications with FUJITSU Enterprise Postgres.

A.1 Precautions when Using Functions and Operators
This section describes notes for using functions and operators.

A.1.1 General rules of Functions and Operators
This section describes general rules for using functions and operators. Ensure the general rules are followed when using functions and
operators to develop applications.

General rules

- Specify the stated numbers for arguments when specifying numbers for arguments in functions.

- Specify the stated data types when specifying data types for functions. If you use a data type other than the stated data types, use
CAST to explicitly convert the data type.

- Specify data types that can be compared when specifying data types for operators. If you use a data type that cannot be compared,
use CAST to explicitly convert the data type.

 See

Refer to "Functions and Operators" under "The SQL Language" in the PostgreSQL Documentation for information on the functions and
operators available with FUJITSU Enterprise Postgres.

A.1.2 Errors when Developing Applications that Use Functions and/or
Operators

This section provides examples of problems that may occur when developing applications that use functions and/or operators, and describes
how to deal with them.

The error "Function ***** does not exist" occurs when executing SQL

The following error will occur when executing an SQL statement that does not abide by the general rules for functions:

ERROR: Function ****** does not exist

Note: "*****" denotes the function for which the error occurred, and the data type of its arguments.

The cause of the error will be one of the following:

- The specified function does not exist.

- The wrong number of arguments or wrong argument data type was specified

Corrective action

Check the following points and correct any errors:

- Check if there are any errors in the specified function name, number of arguments, or argument data type, and revise accordingly.

- Check the argument data type of the function displayed in the message. If an unintended data type is displayed, use a function
such as CAST to convert it.

The error "Operator does not exist" occurs when executing SQL

The following error will occur when executing an SQL statement that specifies a data type in the operator that cannot be compared:

ERROR: Operator does not exist: *****

- 73 -

Note: "*****" denotes the operator for which the error occurred, and the data type of the specified value.

Corrective action

Ensure the data type of the expressions specified on the left and right sides of the operator can be compared. If required, revise to
ensure these data types can be compared by using a function such as CAST to explicitly convert them.

A.2 Notes when Using Temporary Tables
In standard SQL, a temporary table can be defined in advance to enable an empty temporary table to be created automatically when the
application connects to the database. However, in FUJITSU Enterprise Postgres, a temporary table must be created when the application
connects to the database by explicitly using the CREATE TABLE statement.

If the same temporary table is repeatedly created and deleted during the same session, the system table might expand, and memory usage
might increase. To prevent this, specify the CREATE TABLE statement to ensure the temporary table is reused.

For example, in cases where a temporary table would be created and deleted for repeatedly executed transactions, specify the CREATE
TABLE statement as shown below:

- Specify "IF NOT EXISTS" to create a temporary table only if none exists when the transaction starts.

- Specify "ON COMMIT DELETE ROWS" to ensure all rows are deleted when the transaction ends.

 See

Refer to "SQL Commands" under "Reference" in the PostgreSQL Documentation for information on the CREATE TABLE statement.

Examples of SQL using a temporary table are shown below:

Example of bad use (creating and deleting a temporary table)

BEGIN;

CREATE TEMPORARY TABLE mytable(col1 CHAR(4), col2 INTEGER) ON COMMIT DROP;

 (mytable processes)

COMMIT;

Example of good use (reusing a temporary table)

BEGIN;

CREATE TEMPORARY TABLE IF NOT EXISTS mytable(col1 CHAR(4), col2 INTEGER) ON COMMIT DELETE ROWS;

 (mytable processes)

COMMIT;

A.3 Implicit Data Type Conversions
An implicit data type conversion refers to a data type conversion performed automatically by FUJITSU Enterprise Postgres, without the
need to explicitly specify the data type to convert to.

The combination of possible data type conversions differs, depending on whether the expression in the conversion source is a literal.

For non-literals, data types can only be converted to other types within the same range.

For literals, character string literal types can be converted to the target data type. Numeric literals are implicitly converted to specific
numeric types. These implicitly converted numeric literals can then have their types converted to match the conversion target data type
within the numeric type range. For bit character string literals, only the bit column data type can be specified. The following shows the range
of type conversions for literals.

- 74 -

Table A.1 Data type combinations that contain literals and can be converted implicitly
Conversion target Conversion source

Character
literal (*1)

Numeric
literal(*2)

Bit
character

string literal

Numeric type SMALLINT Y N N

INTEGER Y Y (*3) N

BIGINT Y Y (*4) N

DECIMAL Y Y (*5) N

NUMERIC Y Y (*5) N

REAL Y N N

DOUBLE PRECISION Y N N

SMALLSERIAL Y N N

SERIAL Y Y (*3) N

BIGSERIAL Y Y (*4) N

Currency type MONEY Y N N

Character type CHAR Y N N

VARCHAR Y N N

NCHAR Y N N

NCHAR VARYING Y N N

TEXT Y N N

Binary data type BYTEA Y N N

Date/time type TIMESTAMP WITHOUT
TIME ZONE

Y N N

TIMESTAMP WITH TIME
ZONE

Y N N

DATE Y N N

TIME WITHOUT TIME ZONE Y N N

TIME WITH TIME ZONE Y N N

INTERVAL Y N N

Boolean type BOOLEAN Y N N

Geometric type POINT Y N N

LSEG Y N N

BOX Y N N

PATH Y N N

POLYGON Y N N

CIRCLE Y N N

Network address type CIDR Y N N

INET Y N N

MACADDR Y N N

MACADDR8 Y N N

Bit string type BIT Y N Y

- 75 -

Conversion target Conversion source

Character
literal (*1)

Numeric
literal(*2)

Bit
character

string literal

BIT VARYING Y N Y

Text search type TSVECTOR Y N N

TSQUERY Y N N

UUID type UUID Y N N

XML type XML Y N N

JSON type JSON Y N N

Y: Can be converted
N: Cannot be converted

*1: Only strings that can be converted to the data type of the conversion target can be specified (such as "1" if the conversion target is a
numeric type)

*2: "Y" indicates specific numeric types that are converted first.

*3: Integers that can be expressed as INTEGER types can be specified

*4: Integers that cannot be expressed as INTEGER types, but can be expressed as BIGINT types, can be specified

*5: Integers that cannot be expressed as INTEGER or BIGINT types, but that can be expressed as NUMERIC types, or numeric literals that
contain a decimal point or the exponent symbol (e), can be specified

Implicit data type conversions can be used when comparing or storing data.

The conversion rules differ, depending on the reason for converting. Purpose-specific explanations are provided below.

A.3.1 Function Argument
Value expressions specified in a function argument will be converted to the data type of that function argument.

 See

Refer to "Functions and Operators" under "The SQL Language" in the PostgreSQL Documentation for information on data types that can
be specified in function arguments.

A.3.2 Operators
Comparison operators, BETWEEN, IN

Combinations of data types that can be compared using comparison operators, BETWEEN, or IN are shown below.

Table A.2 Combinations of comparable data type

Left side Right side

Numeric
type

Characte
r string

type

Date/time type

Numeric type Y N N

Character type N Y N

Date/time type N N Y

- 76 -

Y: Can be compared
N: Cannot be compared

When strings with different lengths are compared, the shorter one is padded with spaces to make the lengths match.

When numeric values with different precisions are compared, data will be converted to the type with the higher precision.

Set operation and CASE also follow the same rules.

Other operators

Value expressions specified in operators will be converted to data types that are valid for that operator.

 See

Refer to "Functions and Operators" under "The SQL Language" in the PostgreSQL Documentation for information on data types that
can be specified in operators.

A.3.3 Storing Values
Value expressions specified in the VALUES clause of the INSERT statement or the SET clause of the UPDATE statement will be converted
to the data type of the column in which they will be stored.

A.4 Notes on Using Index
This section explains the notes on using the following indexes:

- SP-GiST index

A.4.1 SP-GiST Index
If more than 2 concurrent updates are performed on a table in which the SP-GiST index is defined, applications may stop responding. When
this occur, all system processes including the Check Pointer process will also be in the state of no response. For these reasons, use of the
SP-GiST index is not recommended.

A.5 Notes on Using Multibyte Characters in Definition Names
Multibyte characters must not be used in database names or user names, because certain conditions may apply or it may not be possible to
connect to some clients.

Related notes and constraints are described below.

1) Configuring the client encoding system

The client encoding system must be configured when the names are created.

 See

Refer to "Character Set Support" in "Server Administration" in the PostgreSQL Documentation for information on how to configure the
client encoding system.

2) Encoding system of names used for connection

Ensure that the encoding system of names used for connection is the same as that of the database that was connected when these names were
created.

The reasons for this are as follows:

- 77 -

- Storage system for names in FUJITSU Enterprise Postgres

The system catalog saves encoded names by using the encoding system of the database at the time the names were created.

- Encoding conversion policy when connected

When connected, names sent from the client are matched with names in the system catalog without performing encoding conversion.

Accordingly, if the database that was connected when the names were defined uses the EUC_JP encoding system, but the database name
is specified using UTF-8 encoding, then the database will be considered to be non-existent.

3) Connection constraints

The table below shows the connection constraints for each client type, based on the following assumptions:

- The conditions described in 1) and 2) above are satisfied.

- The database name and user names use the same encoding system.

Client type Client operating system

JDBC driver Cannot be connected

ODBC driver No connection constraints

SQLEmbedded SQL in C No connection constraints

psql command No connection constraints

- 78 -

Appendix B Conversion Procedures Required due to
Differences from Oracle Database

This appendix explains how to convert from an Oracle database to FUJITSU Enterprise Postgres, within the scope noted in "Chapter 7
Compatibility with Oracle Databases" from the following perspectives:

- Feature differences

- Specification differences

This document assumes that the version of the Oracle database to be converted is 7-10.2g.

B.1 Outer Join Operator (Perform Outer Join)
Features

In the WHERE clause conditional expression, by adding the plus sign (+), which is the outer join operator, to the column of the table
you want to add as a table join, it is possible to achieve an outer join that is the same as a joined table (OUTER JOIN).

B.1.1 Comparing with the ^= Comparison Operator

Oracle database

SELECT *

 FROM t1, t2

 WHERE t1.col1(+) ^= t2.col1;

Note: col1 is assumed to be CHAR(4) type

FUJITSU Enterprise Postgres

SELECT *

 FROM t1, t2

 WHERE t1.col1(+) != t2.col1;

Note: col1 is assumed to be CHAR(4) type

Feature differences

Oracle database

The ^= comparison operator can be specified.

FUJITSU Enterprise Postgres

The ^= comparison operator cannot be specified.

Conversion procedure

Convert using the following procedure:

1. Locate the places where the keyword "^=" is used.

2. Ensure that the keyword, "(+)", is either on the right or left-hand side.

3. Change "^=" to " !=".

- 79 -

B.2 DECODE (Compare Values and Return Corresponding
Results)

Features

DECODE compares values of the conversion target value expression and the search values one by one, and if the values of the
conversion target value expression and the search values match, a corresponding result value is returned.

B.2.1 Comparing Numeric Data of Character String Types and Numeric
Characters

Oracle database

SELECT DECODE(col1,

 1000, 'ITEM-A',

 2000, 'ITEM-B',

 'ITEM-C')

 FROM t1;

Note: col1 is assumed to be CHAR(4) type

FUJITSU Enterprise Postgres

SELECT DECODE(CAST(col1 AS INTEGER),

 1000, 'ITEM-A',

 2000, 'ITEM-B',

 'ITEM-C')

 FROM t1;

Note: col1 is assumed to be CHAR(4) type

Feature differences

Oracle database

When the value expression is a string and the search value is a numeric, the string value will be converted to the data type of the
comparison target numeric, so that they can be compared.

FUJITSU Enterprise Postgres

If the conversion target value expression is a string value, then no search value can be specified with numbers.

Conversion procedure

Since the data type that can be specified for the conversion target value expression is unknown, use CAST to explicitly convert the
conversion target value expression (col1 in the example) to a numeric (INTEGER type in the example).

B.2.2 Obtaining Comparison Result from more than 50 Conditional
Expressions

Oracle database

SELECT DECODE(col1,

 1,'A',

 2,'B',

 ...

 78,'BZ',

 NULL,'UNKNOWN',

 'OTHER')

 FROM t1;

- 80 -

Note: col1 is assumed to be INTEGER type

FUJITSU Enterprise Postgres

SELECT CASE

 WHEN col1 = 1 THEN 'A'

 WHEN col1 = 2 THEN 'B'

 ...

 WHEN col1 = 78 THEN 'BZ'

 WHEN col1 IS NULL THEN 'UNKNOWN'

 ELSE 'OTHER'

 END

 FROM t1;

Note: col1 is assumed to be INTEGER type

Feature differences

Oracle database

Search value with a maximum of 127 items (up to 255 arguments in total) can be specified.

FUJITSU Enterprise Postgres

Search value with a maximum of 49 items (up to 100 arguments in total) only can be specified.

Conversion procedure

Convert to the CASE expression using the following procedure:

1. Specify the DECODE conversion target value expression (col1 in the first argument, in the example) and the search value (1 in
the second argument, in the example) for the CASE expression search condition. Specify the DECODE result value ('A' in the
third argument, in the example) for the CASE expression THEN (WHEN col1 = 1 THEN 'A', in the example). Note that if the
search value is NULL, specify "IS NULL" for the search condition for the CASE expression.

2. If the DECODE default value ('OTHER' in the last argument, in the example) is specified, specify the default value for the CASE
expression ELSE (ELSE 'OTHER', in the example).

B.2.3 Obtaining Comparison Result from Values with Different Data Types

Oracle database

SELECT DECODE(col1,

 '1000', 'A',

 '2000', 1,

 'OTHER')

FROM t1;

Note: col1 is assumed to be CHAR(4) type

FUJITSU Enterprise Postgres

SELECT DECODE(col1,

 '1000', 'A',

 '2000', '1',

 'OTHER')

FROM t1;

Note: col1 is assumed to be CHAR(4) type

- 81 -

Feature differences

Oracle database

The data types of all result values are converted to the data type of the first result value.

FUJITSU Enterprise Postgres

Results in an error.

Conversion procedure

Convert using the following procedure:

1. Check the literal data type for the first result value specified.

2. Change the literals specified for each result value to the literal data type checked in the step 1.

B.3 SUBSTR (Extract a String of the Specified Length from
Another String)

Features

SUBSTR returns the number of characters specified in the third argument (starting from the position specified in the second argument)
from the string specified in the first argument.

Refer to "7.2.1 Notes on SUBSTR" for details on precautions when using SUBSTR.

B.3.1 Specifying a Value Expression with a Data Type Different from the One
that can be Specified for Function Arguments

Oracle database

SELECT SUBSTR(col1,

 1,

 col2)

 FROM DUAL;

Note: col1 and col2 are assumed to be CHAR type

FUJITSU Enterprise Postgres

CREATE CAST (CHAR AS INTEGER) WITH INOUT AS IMPLICIT;

SELECT SUBSTR(col1,

 1,

 col2)

 FROM DUAL;

No changes to SELECT statement;

Note: col1 and col2 are assumed to be CHAR type

Feature differences

Oracle database

If the type can be converted to a data type that can be specified for function arguments, conversion is performed implicitly.

FUJITSU Enterprise Postgres

If the data types are different from each other, or if loss of significance occurs, implicit conversion is not performed.

- 82 -

Conversion procedure

Since the data type of the string length is clear, first execute the following CREATE CAST only once so that the CHAR type value (col2
in the example) specified for the string length is implicitly converted to INTEGER type.

CREATE CAST (CHAR AS INTEGER) WITH INOUT AS IMPLICIT;

B.3.2 Extracting a String with the Specified Format from a Datetime Type
Value

Oracle database

SELECT SUBSTR(CURRENT_TIMESTAMP,

 1,

 8)

 FROM DUAL;

FUJITSU Enterprise Postgres

SELECT SUBSTR(TO_CHAR(CURRENT_TIMESTAMP,

 'DD-MON-YY HH.MI.SS.US PM')

 1,

 8)

 FROM DUAL;

Feature differences

Oracle database

A datetime value such as CURRENT_TIMESTAMP can be specified for character value expressions.

FUJITSU Enterprise Postgres

A datetime value such as CURRENT_TIMESTAMP cannot be specified for character value expressions.

Conversion procedure

First, specify TO_CHAR for the SUBSTR character value expression.
Specify datetime type (CURRENT_TIMESTAMP, in the example) in firstArg of TO_CHAR, and specify the format template pattern
('DD-MON-YY HH.MI.SS.US PM', in the example) for secondArg to match with the result of SUBSTR before conversion.

TO_CHAR specification format: TO_CHAR(firstArg, secondArg)

 Information

Refer to "Data Type Formatting Functions" in the PostgreSQL Documentation for information on format template patterns that can be
specified for TO_CHAR in FUJITSU Enterprise Postgres.

B.3.3 Concatenating a String Value with a NULL value

Oracle database

SELECT SUBSTR(col1 || col2,

 2,

 5)

 FROM t1;

Note: col1 and col2 are assumed to be character string type, and col2 may contain NULL

- 83 -

FUJITSU Enterprise Postgres

SELECT SUBSTR(col1 || NVL(col2, '')

 2,

 5)

 FROM t1;

Note: col1 and col2 are assumed to be character string type, and col2 may contain NULL

Feature differences

Oracle database

NULL is handled as an empty string, and strings are joined.

FUJITSU Enterprise Postgres

NULL is not handled as an empty string, and the result of joining the strings becomes NULL.

Conversion procedure

Convert using the following procedure:

1. Locate the places where the keyword "||" is used.

2. Check if any of the value expressions can contain NULL - if they can, then execute step 3.

3. Modify to NVL(valExpr,'').

B.4 NVL (Replace NULL)
Features

NVL converts NULL values.

B.4.1 Obtaining Result from Arguments with Different Data Types

Oracle database

SELECT NVL(col1,

 col2)

 FROM t1;

Note: col1 is assumed to be VARCHAR(100) type, and col2 is assumed to be CHAR(100) type

FUJITSU Enterprise Postgres

SELECT NVL(col1,

 CAST(col2 AS VARCHAR(100)))

 FROM t1;

Note: col1 is assumed to be VARCHAR(100) type, and col2 is assumed to be CHAR(100) type

Feature differences

Oracle database

Value expressions with different data types can be specified. If the first argument is a string value, then VARCHAR2 is returned,
and if it is a numeric, then a numeric type with greater range is returned.

FUJITSU Enterprise Postgres

Value expressions with different data types cannot be specified.

- 84 -

Conversion procedure

Since the data types that can be specified for the expressions in the two arguments are unknown, use the following steps to convert:

1. Check the data types specified for each of the two expressions.

2. Using the data type that is to be received as a result, explicitly convert the other argument with CAST.

B.4.2 Operating on Datetime/Numeric, Including Adding Number of Days to
a Particular Day

Oracle database

SELECT NVL(col1 + 10, CURRENT_DATE)

 FROM t1;

Note: col1 is assumed to be TIMESTAMP WITHOUT TIME ZONE type or TIMESTAMP WITH TIME ZONE type

FUJITSU Enterprise Postgres

SELECT NVL(CAST(col1 AS DATE) + 10, CURRENT_DATE)

 FROM t1;

Note: col1 is assumed to be TIMESTAMP WITHOUT TIME ZONE type or TIMESTAMP WITH TIME ZONE type

Feature differences

Oracle database

Numbers can be operated (added to or subtracted from) with either TIMESTAMP WITHOUT TIME ZONE type or TIMESTAMP
WITH TIME ZONE type. Operation result will be DATE type.

FUJITSU Enterprise Postgres

Numbers cannot be operated (added to or subtracted from) with neither TIMESTAMP WITHOUT TIME ZONE type nor
TIMESTAMP WITH TIME ZONE type. However, numbers can be operated (added to or subtracted from) with DATE type.

Conversion procedure

Convert using the following procedure:

1. Search locations where the keyword "+" or "-" is used in addition or subtraction, and check if these operations are between
numbers and TIMESTAMP WITHOUT TIME ZONE type or TIMESTAMP WITH TIME ZONE type.

2. If they are, use CAST to explicitly convert TIMESTAMP WITHOUT TIME ZONE type or TIMESTAMP WITH TIME ZONE
type to DATE type.

B.4.3 Calculating INTERVAL Values, Including Adding Periods to a Date

Oracle database

SELECT NVL(CURRENT_DATE + (col1 * 1.5), col2)

 FROM t1;

Note: col1 and col2 are assumed to be INTERVAL YEAR TO MONTH types

FUJITSU Enterprise Postgres

SELECT NVL(CURRENT_DATE +

 CAST(col1 * 1.5 AS

 INTERVAL YEAR TO MONTH), col2)

 FROM t1;

Note: col1 and col2 are assumed to be INTERVAL YEAR TO MONTH types

- 85 -

Feature differences

Oracle database

INTERVAL YEAR TO MONTH type multiplication and division result in INTERVAL YEAR TO MONTH type and any fraction
(number of days) will be truncated.

FUJITSU Enterprise Postgres

INTERVAL YEAR TO MONTH type multiplication and division result in INTERVAL type and fractions (number of days) will not
be truncated.

Conversion procedure

Convert using the following procedure:

1. Search locations where the keywords "*" or "/" are used in multiplication or division, and check if the specified value is
INTERVAL YEAR TO MONTH type.

2. If the value is INTERVAL YEAR TO MONTH type, use CAST to explicitly convert the operation result to INTERVAL YEAR
TO MONTH type.

B.5 DBMS_OUTPUT (Output Messages)
Features

DBMS_OUTPUT sends messages to clients such as psql from PL/pgSQL.

B.5.1 Outputting Messages Such As Process Progress Status

Oracle database

set serveroutput on;...(1)

DECLARE

 v_col1 CHAR(20);

 v_col2 INTEGER;

 CURSOR c1 IS

 SELECT col1, col2 FROM t1;

BEGIN

 DBMS_OUTPUT.PUT_LINE('-- BATCH_001 Start --');

 OPEN c1;

 DBMS_OUTPUT.PUT_LINE('-- LOOP Start --');

 LOOP

 FETCH c1 INTO v_col1, v_col2;

 EXIT WHEN c1%NOTFOUND;

 DBMS_OUTPUT.PUT('.');

 END LOOP;

 DBMS_OUTPUT.NEW_LINE; ...(2)

 DBMS_OUTPUT.PUT_LINE('-- LOOP End --');

 CLOSE c1;

 DBMS_OUTPUT.PUT_LINE('-- BATCH_001 End --');

EXCEPTION

 WHEN OTHERS THEN

 DBMS_OUTPUT.PUT_LINE('-- SQL Error --');

 DBMS_OUTPUT.PUT_LINE('ERROR : ' || SQLERRM);

END;

/

- 86 -

FUJITSU Enterprise Postgres

DO $$

DECLARE

 v_col1 CHAR(20);

 v_col2 INTEGER;

 c1 CURSOR FOR

 SELECT col1, col2 FROM t1;

BEGIN

 PERFORM DBMS_OUTPUT.SERVEROUTPUT(TRUE); ...(1)

 PERFORM DBMS_OUTPUT.ENABLE(NULL); ...(1)

 PERFORM DBMS_OUTPUT.PUT_LINE('-- BATCH_001 Start --');

 OPEN c1;

 PERFORM DBMS_OUTPUT.PUT_LINE('-- LOOP Start --');

 LOOP

 FETCH c1 INTO v_col1, v_col2;

 EXIT WHEN FOUND = false;

 PERFORM DBMS_OUTPUT.PUT('.');

 END LOOP;

 PERFORM DBMS_OUTPUT.NEW_LINE(); ...(2)

 PERFORM DBMS_OUTPUT.PUT_LINE('-- LOOP End --');

 CLOSE c1;

 PERFORM DBMS_OUTPUT.PUT_LINE('-- BATCH_001 End --');

EXCEPTION

 WHEN OTHERS THEN

 PERFORM DBMS_OUTPUT.PUT_LINE('-- SQL Error --');

 PERFORM DBMS_OUTPUT.PUT_LINE('ERROR : ' || SQLERRM);

END;

$$

;

(1) SERVEROUTPUT/ENABLE

Specification differences

Oracle database

Use SET statement and specify SERVEROUTPUT ON.

FUJITSU Enterprise Postgres

Specify DBMS_SQL.SERVEROUTPUT(TRUE).

Conversion procedure

Convert using the following procedure:

1. Check if a SET SERVEROUTPUT statement is specified before the PL/SQL block of a stored procedure.

2. If a SET SERVEROUTPUT statement is specified, specify DBMS_SQL.SERVEROUTPUT straight after BEGIN of PL/pgSQL.
If ON is specified to have messages output to a window, then specify TRUE. If OFF is specified, then specify FALSE.

3. Specify DBMS_SQL.ENABLE only if SET SERVEROUTPUT is ON. The values to be specified for the argument are as follows:

- If SIZE is specified for the SET SERVEROUTPUT statement, specify this size for the argument.

- If SIZE is not specified for the SET SERVEROUTPUT statement, then specify 2000 for Oracle10.1g or earlier, NULL for
Oracle10.2g or later.

If DBMS_SQL.ENABLE is specified for the PL/SQL block of the stored procedure, specify the same value as that argument.

- 87 -

(2) NEW_LINE

Specification differences

Oracle database

If there is no argument for packageName.featureName, parenthesis can be omitted.

FUJITSU Enterprise Postgres

Even if there is no argument for packageName.featureName, parenthesis cannot be omitted.

Conversion procedure

Convert using the following procedure:

1. Locate the places where the keyword "DBMS_OUTPUT.NEW_LINE" is used in the stored procedure.

2. If there is no parenthesis after packageName.featureName, add the parenthesis.

B.5.2 Receiving a Return Value from a Procedure (PL/SQL) Block (For
GET_LINES)

Oracle database

set serveroutput off;

DECLARE

 v_num INTEGER;

BEGIN

 DBMS_OUTPUT.DISABLE; ...(3)

 DBMS_OUTPUT.ENABLE(20000); ...(4)

 DBMS_OUTPUT.PUT_LINE('-- ITEM CHECK --');

 SELECT count(*) INTO v_num FROM t1;

 IF v_num = 0 THEN

 DBMS_OUTPUT.PUT_LINE('-- NO ITEM --');

 ELSE

 DBMS_OUTPUT.PUT_LINE('-- IN ITEM(' || v_num || ') --');

 END IF;

END;

/

set serveroutput on;

DECLARE

 v_buffs DBMSOUTPUT_LINESARRAY; ...(5)

 v_num INTEGER := 10;

BEGIN

 DBMS_OUTPUT.GET_LINES(v_buffs, v_num); ...(5)

 FOR i IN 1..v_num LOOP

 DBMS_OUTPUT.PUT_LINE('LOG : ' || v_buffs(i)); ...(5)

 END LOOP;

END;

/

- 88 -

FUJITSU Enterprise Postgres

DO $$

DECLARE

 v_num INTEGER;

BEGIN

 PERFORM DBMS_OUTPUT.SERVEROUTPUT(FALSE);

 PERFORM DBMS_OUTPUT.DISABLE(); ...(3)

 PERFORM DBMS_OUTPUT.ENABLE(20000); ...(4)

PERFORM DBMS_OUTPUT.PUT_LINE('-- ITEM CHECK --');

 SELECT count(*) INTO v_num FROM t1;

 IF v_num = 0 THEN

 PERFORM DBMS_OUTPUT.PUT_LINE('-- NO ITEM --');

 ELSE

 PERFORM DBMS_OUTPUT.PUT_LINE('-- IN ITEM(' || v_num || ') --');

 END IF;

END;

$$

;

DO $$

DECLARE

 v_buffs VARCHAR[]; ...(5)

 v_num INTEGER := 10;

BEGIN

 PERFORM DBMS_OUTPUT.SERVEROUTPUT(TRUE);

 SELECT lines, numlines INTO v_buffs, v_num FROM DBMS_OUTPUT.GET_LINES(v_num); ...(5)

 FOR i IN 1..v_num LOOP

 PERFORM DBMS_OUTPUT.PUT_LINE('LOG : ' || v_buffs[i]); ...(5)

 END LOOP;

END;

$$

;

(3) DISABLE

Same as the NEW_LINE in the DBMS_OUTPUT package. Refer to NEW_LINE for information on specification differences and
conversion procedures associated with specification differences.

(4) ENABLE

Same as NEW_LINE in the DBMS_OUTPUT package. Refer to NEW_LINE for information on specification differences and
conversion procedures associated with specification differences.

(5) GET_LINES

Specification format for Oracle database

DBMS_OUTPUT.GET_LINES(firstArg, secondArg)

Specification differences

Oracle database

Obtained values are received with variables specified for arguments.

FUJITSU Enterprise Postgres

Since obtained values are the search results for DBMS_OUTPUT.GET_LINES, they are received with variables specified for the
INTO clause of the SELECT statement.

- 89 -

Conversion procedure

Convert using the following procedure:

1. Locate the places where the keyword "DBMS_OUTPUT.GET_LINES" is used in the stored procedure.

2. Change the data type (DBMSOUTPUT_LINESARRAY in the example) of the variable (v_buffs in the example) specified as
firstArg of DBMS_OUTPUT.GET_LINES into a VARCHAR type array (VARCHAR[] in the example).

3. Replace the DBMS_OUTPUT.GET_LINES location called with a SELECT INTO statement.

- Use the literal "lines, numlines" in the select list.

- Specify firstArg (v_buffs in the example) and secondArg (v_num in the example) configured in
DBMS_OUTPUT.GET_LINES, in the INTO clause.

- Use DBMS_OUTPUT.GET_LINES in the FROM clause. Specify only secondArg (v_num in the example) before
modification.

4. Identify the location that references firstArg (v_buffs in the example), and change it to the PL/pgSQL array reference format
(v_buffs[i] in the example).

B.5.3 Receiving a Return Value from a Procedure (PL/SQL) Block (For
GET_LINE)

Oracle database

set serveroutput on;

DECLARE

 v_buff1 VARCHAR2(100);

 v_buff2 VARCHAR2(1000);

 v_num INTEGER;

BEGIN

 v_buff2 := '';

 LOOP

 DBMS_OUTPUT.GET_LINE(v_buff1, v_num); ...(6)

 EXIT WHEN v_num = 1;

 v_buff2 := v_buff2 || v_buff1;

 END LOOP;

 DBMS_OUTPUT.PUT_LINE(v_buff2);

END;

/

Note: Only the process to obtain a value is stated

FUJITSU Enterprise Postgres

DO $$

DECLARE

 v_buff1 VARCHAR(100);

 v_buff2 VARCHAR(1000);

 v_num INTEGER;

BEGIN

 PERFORM DBMS_OUTPUT.SERVEROUTPUT(TRUE);

 v_buff2 := '';

 LOOP

 SELECT line, status INTO v_buff1, v_num FROM DBMS_OUTPUT.GET_LINE(); ...(6)

 EXIT WHEN v_num = 1;

 v_buff2 := v_buff2 || v_buff1;

 END LOOP;

- 90 -

 PERFORM DBMS_OUTPUT.PUT_LINE(v_buff2);

END;

$$

;

Note: Only the process to obtain a value is stated

(6) GET_LINE

Specification format for Oracle database

DBMS_OUTPUT.GET_LINE(firstArg, secondArg)

Specification differences

Oracle database

Obtained values are received with variables specified for arguments.

FUJITSU Enterprise Postgres

Since obtained values are the search results for DBMS_OUTPUT.GET_LINES, they are received with variables specified for the
INTO clause of the SELECT statement.

Conversion procedure

Convert using the following procedure:

1. Locate the places where the keyword "DBMS_OUTPUT.GET_LINE" is used in the stored procedure.

2. Replace the DBMS_OUTPUT.GET_LINE location called with a SELECT INTO statement.

- Use the literal "line, status" in the select list.

- Specify firstArg (v_buff1 in the example) and secondArg (v_num in the example) configured in
DBMS_OUTPUT.GET_LINE, in the INTO clause.

- Use DBMS_OUTPUT.GET_LINE in the FROM clause. Although arguments are not specified, parenthesis must be
specified.

B.6 UTL_FILE (Perform File Operation)
Features

UTL_FILE reads and writes text files from PL/pgSQL.

B.6.1 Registering a Directory to Load and Write Text Files

Oracle database

[Oracle9i or earlier]

Configure the following with initialization parameter

 UTL_FILE_DIR='/home/fsep' ...(1)

[Oracle9.2i or later]

 Configure the following with CREATE DIRECTORY statement

 CREATE DIRECTORY DIR AS '/home/fsep'; ...(1)

FUJITSU Enterprise Postgres

INSERT INTO UTL_FILE.UTL_FILE_DIR(dir)

 VALUES('/home/fsep'); ...(1)

(1) UTL_FILE_DIR/CREATE DIRECTORY

- 91 -

Feature differences

Oracle database

Configure the directory to be operated, using the CREATE DIRECTORY statement or the initialization parameter UTL_FILE_DIR.

FUJITSU Enterprise Postgres

The directory to be operated cannot be configured using the CREATE DIRECTORY statement or the initialization parameter
UTL_FILE_DIR.

Conversion procedure

Configure the target directory information in the UTL_FILE.UTL_FILE_DIR table using the INSERT statement. Note that this
conversion procedure should be performed only once before executing the PL/pgSQL function.

- When using the initialization parameter UTL_FILE_DIR:

1. Check the initialization parameter UTL_FILE_DIR value ('/home/fsep' in the example).

2. Using the INSERT statement, specify and execute the directory name checked in step 1.
- Specify UTL_FILE.UTL_FILE_DIR(dir) for the INTO clause.
- Using the character string literal ('/home/fsep' in the example), specify the target directory name for the VALUES clause.
- If multiple directories are specified, execute the INSERT statement for each directory.

- When using the CREATE DIRECTORY statement:

1. Check the directory name ('/home/fsep' in the example) registered with the CREATE DIRECTORY statement. To check, log
in SQL*Plus as a user with DBA privileges, and execute "show ALL_DIRECTORIES;".

2. Using the INSERT statement, specify and execute the directory name checked in step 1. Same steps are used to specify the
INSERT statement as when using the initialization parameter UTL_FILE_DIR.

B.6.2 Checking File Information

Oracle database

CREATE PROCEDURE read_file(fname VARCHAR2) AS

 v_file UTL_FILE.FILE_TYPE;

 v_exists BOOLEAN;

 v_length NUMBER;

 v_bsize INTEGER;

 v_rbuff VARCHAR2(1024);

BEGIN

 UTL_FILE.FGETATTR('DIR', fname, v_exists, v_length, v_bsize); ...(2)

 IF v_exists <> true THEN

 DBMS_OUTPUT.PUT_LINE('-- FILE NOT FOUND --');

 RETURN;

 END IF;

 DBMS_OUTPUT.PUT_LINE('-- FILE DATA --');

 v_file := UTL_FILE.FOPEN('DIR', fname, 'r', 1024); ...(3)

 FOR i IN 1..3 LOOP

 UTL_FILE.GET_LINE(v_file, v_rbuff, 1024); ...(4)

 DBMS_OUTPUT.PUT_LINE(v_rbuff);

 END LOOP;

 DBMS_OUTPUT.PUT_LINE('... more');

 DBMS_OUTPUT.PUT_LINE('-- READ END --');

- 92 -

 UTL_FILE.FCLOSE(v_file); ...(5)

 RETURN;

EXCEPTION

 WHEN NO_DATA_FOUND THEN

 DBMS_OUTPUT.PUT_LINE('-- FILE END --');

 UTL_FILE.FCLOSE(v_file);

 RETURN;

 WHEN OTHERS THEN

 DBMS_OUTPUT.PUT_LINE('-- SQL Error --');

 DBMS_OUTPUT.PUT_LINE('ERROR : ' || SQLERRM);

 UTL_FILE.FCLOSE_ALL; ...(6)

 RETURN;

END;

/

set serveroutput on

call read_file('file01.txt');

FUJITSU Enterprise Postgres

CREATE FUNCTION read_file(fname VARCHAR) RETURNS void AS $$

DECLARE

 v_file UTL_FILE.FILE_TYPE;

 v_exists BOOLEAN;

 v_length NUMERIC;

 v_bsize INTEGER;

 v_rbuff VARCHAR(1024);

BEGIN

 PERFORM DBMS_OUTPUT.SERVEROUTPUT(TRUE);

 SELECT fexists, file_length, blocksize

 INTO v_exists, v_length, v_bsize

 FROM UTL_FILE.FGETATTR('/home/fsep', fname); ...(2)

 IF v_exists <> true THEN

 PERFORM DBMS_OUTPUT.PUT_LINE('-- FILE NOT FOUND --');

 RETURN;

 END IF;

 PERFORM DBMS_OUTPUT.PUT_LINE('-- FILE DATA --');

 v_file := UTL_FILE.FOPEN('/home/fsep', fname, 'w', 1024); ...(3)

 FOR i IN 1..3 LOOP

 v_rbuff := UTL_FILE.GET_LINE(v_file, 1024); ...(4)

 PERFORM DBMS_OUTPUT.PUT_LINE(v_rbuff);

 END LOOP;

 PERFORM DBMS_OUTPUT.PUT_LINE('... more');

 PERFORM DBMS_OUTPUT.PUT_LINE('-- READ END --');

 v_file := UTL_FILE.FCLOSE(v_file); ...(5)

 RETURN;

EXCEPTION

 WHEN NO_DATA_FOUND THEN

 PERFORM DBMS_OUTPUT.PUT_LINE('-- FILE END --');

 v_file := UTL_FILE.FCLOSE(v_file);

 RETURN;

 WHEN OTHERS THEN

 PERFORM DBMS_OUTPUT.PUT_LINE('-- SQL Error --');

 PERFORM DBMS_OUTPUT.PUT_LINE('ERROR : ' || SQLERRM);

- 93 -

 PERFORM UTL_FILE.FCLOSE_ALL(); ...(6)

 RETURN;

END;

$$

LANGUAGE plpgsql;

SELECT read_file('file01.txt');

(2) FGETATTR

Specification format for Oracle database

UTL_FILE.FGETATTR(firstArg, secondArg, thirdArg, fourthArg, fifthArg)

Feature differences

Oracle database

If using a CREATE DIRECTORY statement (Oracle9.2i or later), specify a directory object name for the directory name.

FUJITSU Enterprise Postgres

A directory object name cannot be specified for the directory name.

Specification differences

Oracle database

Obtained values are received with variables specified for arguments.

FUJITSU Enterprise Postgres

Since obtained values are the search results for UTL_FILE.FGETATTR, they are received with variables specified for the INTO
clause of the SELECT statement.

Conversion procedure

Convert using the following procedure. Refer to UTL_FILE_DIR/CREATE DIRECTORY for information on how to check if the
directory object name corresponds to the actual directory name.

1. Locate the places where the keyword "UTL_FILE.FOPEN" is used in the stored procedure.

2. Check the actual directory name ('/home/fsep' in the example) that corresponds to the directory object name ('DIR' in the
example).

3. Replace the directory object name ('DIR' in the example) in firstArg with the actual directory name ('/home/fsep' in the example)
verified in step 2.

4. Replace the UTL_FILE.FGETATTR location called with a SELECT INTO statement.

- Use the literal "fexists, file_length, blocksize" in the select list.

- Specify thirdArg, fourthArg, and fifthArg (v_exists, v_length, v_bsize, in the example) specified for
UTL_FILE.FGETATTR to the INTO clause in the same order as that of the arguments.

- Use UTL_FILE.FGETATTR in the FROM clause. Specify only the actual directory name for firstArg ('/home/fsep' in the
example) and secondArg (fname in the example) before modification for the arguments.

(3) FOPEN

Specification format for Oracle

UTL_FILE.FOPEN(firstArg, secondArg, thirdArg, fourthArg, fifthArg)

Feature differences

Oracle database

If using a CREATE DIRECTORY statement (Oracle9.2i or later), specify a directory object name for the directory name.

- 94 -

FUJITSU Enterprise Postgres

A directory object name cannot be specified for the directory name.

Conversion procedure

Convert using the following procedure. Refer to UTL_FILE_DIR/CREATE DIRECTORY for information on how to check if the
directory object name corresponds to the actual directory name.

1. Locate the places where the keyword "UTL_FILE.FOPEN" is used in the stored procedure.

2. Check the actual directory name ('/home/fsep' in the example) that corresponds to the directory object name ('DIR' in the
example).

3. Replace the directory object name ('DIR' in the example) in firstArg with the actual directory name ('/home/fsep' in the example)
checked in step 1.

(4) GET_LINE

Specification format for Oracle database

UTL_FILE.GET_LINE(firstArg, secondArg, thirdArg, fourthArg)

Specification differences

Oracle database

Obtained values are received with variables specified for arguments.

FUJITSU Enterprise Postgres

Since obtained values are the returned value of UTL_FILE.GET_LINE, they are received with variables specified for substitution
statement.

Conversion procedure

Convert using the following procedure:

1. Locate the places where the keyword "UTL_FILE.GET_LINE" is used in the stored procedure.

2. Replace the UTL_FILE.GET_LINE location called with a value assignment (:=).

- On the left-hand side, specify secondArg (v_rbuff in the example) specified for UTL_FILE.GET_LINE.

- Use UTL_FILE.GET_LINE in the right-hand side. Specify only firstArg (v_file in the example) and thirdArg (1024 in the
example) before modification.

(5) FCLOSE

Specification format for Oracle database

UTL_FILE.FCLOSE(firstArg)

Specification differences

Oracle database

After closing, the file handler specified for the argument becomes NULL.

FUJITSU Enterprise Postgres

After closing, set the file handler to NULL by assigning the return value of UTL_FILE.FCLOSE to it.

Conversion procedure

Convert using the following procedure:

1. Locate the places where the keyword "UTL_FILE.FCLOSE" is used in the stored procedure.

- 95 -

2. Replace the UTL_FILE.FCLOSE location called with a value assignment (:=) so that the file handler (v_file in the example)
becomes NULL.

- On the left-hand side, specify the argument (v_file in the example) specified for UTL_FILE.FCLOSE.

- Use UTL_FILE.FCLOSE in the right-hand side. For the argument, specify the same value (v_file in the example) as before
modification.

(6) FCLOSE_ALL

Same as NEW_LINE in the DBMS_OUTPUT package. Refer to NEW_LINE in the DBMS_OUTPUT for information on specification
differences and conversion procedures associated with specification differences.

B.6.3 Copying Files

Oracle database

CREATE PROCEDURE copy_file(fromname VARCHAR2, toname VARCHAR2) AS

BEGIN

 UTL_FILE.FCOPY('DIR1', fromname, 'DIR2', toname, 1, NULL); ...(7)

 RETURN;

EXCEPTION

 WHEN OTHERS THEN

 DBMS_OUTPUT.PUT_LINE('-- SQL Error --');

 DBMS_OUTPUT.PUT_LINE('ERROR : ' || SQLERRM);

 RETURN;

END;

/

set serveroutput on

call copy_file('file01.txt','file01_bk.txt');

FUJITSU Enterprise Postgres

CREATE FUNCTION copy_file(fromname VARCHAR, toname VARCHAR) RETURNS void AS $$

BEGIN

 PERFORM DBMS_OUTPUT.SERVEROUTPUT(TRUE);

 PERFORM UTL_FILE.FCOPY('/home/fsep', fromname, '/home/backup', toname, 1, NULL); ...(7)

 RETURN;

EXCEPTION

 WHEN OTHERS THEN

 PERFORM DBMS_OUTPUT.PUT_LINE('-- SQL Error --');

 PERFORM DBMS_OUTPUT.PUT_LINE('ERROR : ' || SQLERRM);

 RETURN;

END;

$$

LANGUAGE plpgsql;

SELECT copy_file('file01.txt','file01_bk.txt');

(7) FCOPY

- 96 -

Specification format for Oracle database

UTL_FILE.FCOPY(firstArg, secondArg, thirdArg, fourthArg, fifthArg, sixthArg)

Feature differences

Oracle database

If using a CREATE DIRECTORY statement (Oracle9.2i or later), specify a directory object name for the directory name.

FUJITSU Enterprise Postgres

A directory object name cannot be specified for the directory name.

Conversion procedure

Convert using the following procedure. Refer to UTL_FILE_DIR/CREATE DIRECTORY for information on how to check if the
directory object name corresponds to the actual directory name.

1. Locate the places where the keyword "UTL_FILE.FCOPY" is used in the stored procedure.

2. Check the actual directory names ('/home/fsep' and '/home/backup', in the example) that correspond to the directory object names
('DIR1' and 'DIR2', in the example) of firstArg and thirdArg argument.

3. Replace the directory object name ('DIR1' and 'DIR2', in the example) with the actual directory names ('/home/fsep' in the
example) checked in step 1.

B.6.4 Moving/Renaming Files

Oracle database

CREATE PROCEDURE move_file(fromname VARCHAR2, toname VARCHAR2) AS

BEGIN

 UTL_FILE.FRENAME('DIR1', fromname, 'DIR2', toname, FALSE); ...(8)

 RETURN;

EXCEPTION

 WHEN OTHERS THEN

 DBMS_OUTPUT.PUT_LINE('-- SQL Error --');

 DBMS_OUTPUT.PUT_LINE('ERROR : ' || SQLERRM);

 RETURN;

END;

/

set serveroutput on

call move_file('file01.txt','file02.txt');

FUJITSU Enterprise Postgres

CREATE FUNCTION move_file(fromname VARCHAR, toname VARCHAR) RETURNS void AS $$

BEGIN

 PERFORM DBMS_OUTPUT.SERVEROUTPUT(TRUE);

 PERFORM UTL_FILE.FRENAME('/home/fsep', fromname, '/home/backup', toname, FALSE); ...(8)

 RETURN;

EXCEPTION

 WHEN OTHERS THEN

 PERFORM DBMS_OUTPUT.PUT_LINE('-- SQL Error --');

 PERFORM DBMS_OUTPUT.PUT_LINE('ERROR : ' || SQLERRM);

 RETURN;

END;

- 97 -

$$

LANGUAGE plpgsql;

SELECT move_file('file01.txt','file02.txt');

(8) FRENAME

Same as FCOPY for the UTL_FILE package. Refer to FCOPY in the UTL_FILE package for information on specification differences
and conversion procedures associated with specification differences.

B.7 DBMS_SQL (Execute Dynamic SQL)
Features

For DBMS_SQL, dynamic SQL can be executed from PL/pgSQL.

B.7.1 Searching Using a Cursor

Oracle database

CREATE PROCEDURE search_test(h_where CLOB) AS

 str_sql CLOB;

 v_cnt INTEGER;

 v_array DBMS_SQL.VARCHAR2A;

 v_cur INTEGER;

 v_smpid INTEGER;

 v_smpnm VARCHAR2(20);

 v_addbuff VARCHAR2(20);

 v_smpage INTEGER;

 errcd INTEGER;

 length INTEGER;

 ret INTEGER;

BEGIN

 str_sql := 'SELECT smpid, smpnm FROM smp_tbl WHERE ' || h_where || ' ORDER BY smpid';

 v_smpid := 0;

 v_smpnm := '';

 v_smpage := 0;

 v_cur := DBMS_SQL.OPEN_CURSOR; ...(1)

 v_cnt :=

 CEIL(DBMS_LOB.GETLENGTH(str_sql)/1000);

 FOR idx IN 1 .. v_cnt LOOP

 v_array(idx) :=

 DBMS_LOB.SUBSTR(str_sql,

 1000,

 (idx-1)*1000+1);

 END LOOP;

 DBMS_SQL.PARSE(v_cur, v_array, 1, v_cnt, FALSE, DBMS_SQL.NATIVE); ...(2)

 DBMS_SQL.DEFINE_COLUMN(v_cur, 1, v_smpid);

 DBMS_SQL.DEFINE_COLUMN(v_cur, 2, v_smpnm, 10);

 ret := DBMS_SQL.EXECUTE(v_cur);

 LOOP

- 98 -

 v_addbuff := '';

 IF DBMS_SQL.FETCH_ROWS(v_cur) = 0 THEN

 EXIT;

 END IF;

 DBMS_OUTPUT.PUT_LINE('--');

 DBMS_SQL.COLUMN_VALUE(v_cur, 1, v_smpid, errcd, length); ...(3)

 IF errcd = 1405 THEN ...(3)

 DBMS_OUTPUT.PUT_LINE('smpid = (NULL)');

 ELSE

 DBMS_OUTPUT.PUT_LINE('smpid = ' || v_smpid);

 END IF;

 DBMS_SQL.COLUMN_VALUE(v_cur, 2, v_smpnm, errcd, length);

 IF errcd = 1406 THEN

 v_addbuff := '... [len=' || length || ']';

 END IF;

 IF errcd = 1405 THEN

 DBMS_OUTPUT.PUT_LINE('v_smpnm = (NULL)');

 ELSE

 DBMS_OUTPUT.PUT_LINE('v_smpnm = ' || v_smpnm || v_addbuff);

 END IF;

DBMS_OUTPUT.PUT_LINE('--');

 DBMS_OUTPUT.NEW_LINE;

 END LOOP;

 DBMS_SQL.CLOSE_CURSOR(v_cur); ...(4)

 RETURN;

END;

/

Set serveroutput on

call search_test('smpid < 100');

FUJITSU Enterprise Postgres

CREATE FUNCTION search_test(h_where text) RETURNS void AS $$

DECLARE

 str_sql text;

 v_cur INTEGER;

 v_smpid INTEGER;

 v_smpnm VARCHAR(20);

 v_addbuff VARCHAR(20);

 v_smpage INTEGER;

 errcd INTEGER;

 length INTEGER;

 ret INTEGER;

BEGIN

 PERFORM DBMS_OUTPUT.SERVEROUTPUT(TRUE);

 str_sql := 'SELECT smpid, smpnm FROM smp_tbl WHERE ' || h_where || ' ORDER BY smpid';

- 99 -

 v_smpid := 0;

 v_smpnm := '';

 v_smpage := 0;

 v_cur := DBMS_SQL.OPEN_CURSOR(); ...(1)

 PERFORM DBMS_SQL.PARSE(v_cur, str_sql, 1); ...(2)

 PERFORM DBMS_SQL.DEFINE_COLUMN(v_cur, 1, v_smpid);

 PERFORM DBMS_SQL.DEFINE_COLUMN(v_cur, 2, v_smpnm, 10);

 ret := DBMS_SQL.EXECUTE(v_cur);

 LOOP

 v_addbuff := '';

 IF DBMS_SQL.FETCH_ROWS(v_cur) = 0 THEN

 EXIT;

 END IF;

 PERFORM DBMS_OUTPUT.PUT_LINE('--');

 SELECT value,column_error,actual_length

 INTO v_smpid, errcd, length

 FROM DBMS_SQL.COLUMN_VALUE(v_cur,

 1,

 v_smpid); ...(3)

 IF errcd = 22002 THEN ...(3)

 PERFORM DBMS_OUTPUT.PUT_LINE('smpid = (NULL)');

 ELSE

 PERFORM DBMS_OUTPUT.PUT_LINE('smpid = ' || v_smpid);

 END IF;

 SELECT value,column_error,actual_length INTO v_smpnm, errcd, length FROM

DBMS_SQL.COLUMN_VALUE(v_cur, 2, v_smpnm);

 IF errcd = 22001 THEN

 v_addbuff := '... [len=' || length || ']';

 END IF;

 IF errcd = 22002 THEN

 PERFORM DBMS_OUTPUT.PUT_LINE('v_smpnm = (NULL)');

 ELSE

 PERFORM DBMS_OUTPUT.PUT_LINE('v_smpnm = ' || v_smpnm || v_addbuff);

 END IF;

 PERFORM DBMS_OUTPUT.PUT_LINE('--');

 PERFORM DBMS_OUTPUT.NEW_LINE();

 END LOOP;

 v_cur := DBMS_SQL.CLOSE_CURSOR(v_cur); ...(4)

 RETURN;

END;

$$

LANGUAGE plpgsql;

SELECT search_test('smpid < 100');

(1) OPEN_CURSOR

Same as NEW_LINE in the DBMS_OUTPUT package. Refer to NEW_LINE in the DBMS_OUTPUT package for information on
specification differences and conversion procedures associated with specification differences.

(2) PARSE

- 100 -

Specification format for Oracle database

DBMS_SQL.PARSE(firstArg, secondArg, thirdArg, fourthArg, fifthArg)

Feature differences

Oracle database

SQL statements can be specified with string table types (VARCHAR2A type, VARCHAR2S type). Specify this for secondArg.

DBMS_SQL.NATIVE, DBMS_SQL.V6, DBMS_SQL.V7 can be specified for processing SQL statements.

FUJITSU Enterprise Postgres

SQL statements cannot be specified with string table types.

DBMS_SQL.NATIVE, DBMS_SQL.V6, DBMS_SQL.V7 cannot be specified for processing SQL statements.

Conversion procedure

Convert using the following procedure:

1. Locate the places where the keyword "DBMS_SQL.PARSE" is used in the stored procedure.

2. Check the data type of the SQL statement specified for secondArg (v_array in the example).

- If the data type is either DBMS_SQL.VARCHAR2A type or DBMS_SQL.VARCHAR2S type, then it is a table type
specification. Execute step 3 and continue the conversion process.

- If the data type is neither DBMS_SQL.VARCHAR2A type nor DBMS_SQL.VARCHAR2S type, then it is a string
specification. Execute step 7 and continue the conversion process.

3. Check the SQL statement (str_sql in the example) before it was divided into DBMS_SQL.VARCHAR2A type and
DBMS_SQL.VARCHAR2S type.

4. Delete the sequence of the processes (processes near FOR idx in the example) where SQL is divided into
DBMS_SQL.VARCHAR2A type and DBMS_SQL.VARCHAR2S type.

5. Replace secondArg with the SQL statement (str_sql in the example) before it is divided, that was checked in step 2.

6. Delete thirdArg, fourthArg, and fifthArg (v_cnt, FALSE, DBMS_SQL.NATIVE, in the example).

7. If DBMS_SQL.NATIVE, DBMS_SQL.V6, and DBMS_SQL.V7 are specified, then replace thirdArg with a numeric literal 1.

- If either DBMS_SQL.VARCHAR2A type or DBMS_SQL.VARCHAR2S type is used, then sixthArg becomes relevant.

- If neither DBMS_SQL.VARCHAR2A type nor DBMS_SQL.VARCHAR2S type is used, then thirdArg becomes relevant.

(3) COLUMN_VALUE

Specification format for Oracle database

DBMS_SQL.COLUMN_VALUE(firstArg, secondArg, thirdArg, fourthArg, fifthArg)

Feature differences

Oracle database

The following error codes are returned for column_error.

- 1406: fetched column value was truncated

- 1405: fetched column value is NULL

FUJITSU Enterprise Postgres

The following error codes are returned for column_error.

- 22001: string_data_right_truncation

- 22002: null_value_no_indicator_parameter

- 101 -

Specification differences

Oracle database

Obtained values are received with variables specified for arguments.

FUJITSU Enterprise Postgres

Since obtained values are the search results for DBMS_SQL.COLUMN_VALUE, they are received with variables specified for the
INTO clause of the SELECT statement.

Conversion procedure

Convert using the following procedure:

1. Locate the places where the keyword "DBMS_SQL.COLUMN_VALUE" is used in the stored procedure.

2. Replace the DBMS_SQL.COLUMN_VALUE location called with a SELECT INTO statement.

- Check the number of arguments (v_smpid, errcd, and length in the example) specified after secondArg (1 in the example) of
DBMS_SQL.COLUMN_VALUE.

- Specify "value", "column_error", and "actual_length" in the select list, according to the number of arguments checked in the
previous step (for example, if only thirdArg is specified, then specify "value" only.)

- Specify thirdArg, fourthArg, and fifthArg (v_smpid, errcd, length in the example) configured for
DBMS_SQL.COLUMN_VALUE, for the INTO clause.

- Use DBMS_SQL.COLUMN_VALUE in the FROM clause. Specify firstArg, secondArg, and thirdArg (v_cur, 1, v_smpid,
in the example) before modification.

3. If the fourthArg (column_error value in the example) is used, then check the location of the target variable (errcd in the example).

4. If a decision process is performed in the location checked, then modify the values used in the decision process as below:

- 1406 to 22001

- 1405 to 22002

(4) CLOSE_CURSOR

Specification format for Oracle database

DBMS_SQL.CLOSE_CURSOR(firstArg)

Specification differences

Oracle database

After closing, the cursor specified in firstArg becomes NULL.

FUJITSU Enterprise Postgres

After closing, set the cursor to NULL by assigning the return value of DBMS_SQL.CLOSE_CURSOR to it.

Conversion procedure

Convert using the following procedure:

1. Locate the places where the keyword "DBMS_SQL.CLOSE_CURSOR" is used in the stored procedure.

2. Set the cursor to NULL by assigning (:=) the return value of DBMS_SQL.CLOSE_CURSOR to it.

- On the left-hand side, specify the argument (v_cur in the example) specified for DBMS_SQL.CLOSE_CURSOR.

- Use DBMS_SQL.CLOSE_CURSOR in the right-hand side. For the argument, specify the same value (v_cur in the example)
as before modification.

- 102 -

Appendix C Tables Used by the Features Compatible with
Oracle Databases

This chapter describes the tables used by the features compatible with Oracle databases.

C.1 UTL_FILE.UTL_FILE_DIR
Register the directory handled by the UTL_FILE package in the UTL_FILE.UTL_FILE_DIR table.

Name Type Description

dir text Name of the directory handled by the UTL_FILE package

- 103 -

Appendix D Quantitative Limits
This appendix lists the quantitative limits of FUJITSU Enterprise Postgres.

Table D.1 Length of identifier

Item Limit

Database name Up to 63 bytes (*1) (*2)

Schema name Up to 63 bytes (*1) (*2)

Table name Up to 63 bytes (*1) (*2)

View name Up to 63 bytes (*1) (*2)

Index name Up to 63 bytes (*1) (*2)

Table space name Up to 63 bytes (*1) (*2)

Cursor name Up to 63 bytes (*1) (*2)

Function name Up to 63 bytes (*1) (*2)

Aggregate function name Up to 63 bytes (*1) (*2)

Trigger name Up to 63 bytes (*1) (*2)

Constraint name Up to 63 bytes (*1) (*2)

Conversion name Up to 63 bytes (*1) (*2)

Role name Up to 63 bytes (*1) (*2)

Cast name Up to 63 bytes (*1) (*2)

Collation sequence name Up to 63 bytes (*1) (*2)

Encoding method conversion name Up to 63 bytes (*1) (*2)

Domain name Up to 63 bytes (*1) (*2)

Extension name Up to 63 bytes (*1) (*2)

Operator name Up to 63 bytes (*1) (*2)

Operator class name Up to 63 bytes (*1) (*2)

Operator family name Up to 63 bytes (*1) (*2)

Rewrite rule name Up to 63 bytes (*1) (*2)

Sequence name Up to 63 bytes (*1) (*2)

Text search settings name Up to 63 bytes (*1) (*2)

Text search dictionary name Up to 63 bytes (*1) (*2)

Text search parser name Up to 63 bytes (*1) (*2)

Text search template name Up to 63 bytes (*1) (*2)

Data type name Up to 63 bytes (*1) (*2)

Enumerator type label Up to 63 bytes (*1) (*2)

*1: This is the character string byte length when converted by the server character set character code.

*2: If an identifier that exceeds 63 bytes in length is specified, the excess characters are truncated and it is processed.

Table D.2 Database object

Item Limit

Number of databases Less than 4,294,967,296 (*1)

- 104 -

Item Limit

Number of schemas Less than 4,294,967,296 (*1)

Number of tables Less than 4,294,967,296 (*1)

Number of views Less than 4,294,967,296 (*1)

Number of indexes Less than 4,294,967,296 (*1)

Number of table spaces Less than 4,294,967,296 (*1)

Number of functions Less than 4,294,967,296 (*1)

Number of aggregate functions Less than 4,294,967,296 (*1)

Number of triggers Less than 4,294,967,296 (*1)

Number of constraints Less than 4,294,967,296 (*1)

Number of conversion Less than 4,294,967,296 (*1)

Number of roles Less than 4,294,967,296 (*1)

Number of casts Less than 4,294,967,296 (*1)

Number of collation sequences Less than 4,294,967,296 (*1)

Number of encoding method conversions Less than 4,294,967,296 (*1)

Number of domains Less than 4,294,967,296 (*1)

Number of extensions Less than 4,294,967,296 (*1)

Number of operators Less than 4,294,967,296 (*1)

Number of operator classes Less than 4,294,967,296 (*1)

Number of operator families Less than 4,294,967,296 (*1)

Number of rewrite rules Less than 4,294,967,296 (*1)

Number of sequences Less than 4,294,967,296 (*1)

Number of text search settings Less than 4,294,967,296 (*1)

Number of text search dictionaries Less than 4,294,967,296 (*1)

Number of text search parsers Less than 4,294,967,296 (*1)

Number of text search templates Less than 4,294,967,296 (*1)

Number of data types Less than 4,294,967,296 (*1)

Number of enumerator type labels Less than 4,294,967,296 (*1)

Number of default access privileges defined in the ALTER DEFAULT
PRIVILEGES statement

Less than 4,294,967,296 (*1)

Number of large objects Less than 4,294,967,296 (*1)

Number of index access methods Less than 4,294,967,296 (*1)

*1: The total number of all database objects must be less than 4,294,967,296.

Table D.3 Schema element

Item Limit

Number of columns that can be defined in one table From 250 to 1600 (according to the data type)

Table row length Up to 400 gigabytes

Number of columns comprising a unique constraint Up to 32 columns

Data length comprising a unique constraint Less than 2,000 bytes (*1) (*2)

- 105 -

Item Limit

Table size Up to one terabyte

Search condition character string length in a trigger definition
statement

Up to 800 megabytes (*1) (*2)

Item size Up to 1 gigabyte

*1: Operation might proceed correctly even if operations are performed with a quantity outside the limits.

*2: This is the character string byte length when converted by the server character set character code.

Table D.4 Index

Item Limit

Number of columns comprising a key (including VCI) Up to 32 columns

Key length (other than VCI) Less than 2,000 bytes (*1)

*1: This is the character string byte length when converted by the server character set character code.

Table D.5 Data types and attributes that can be handled

Item Limit

Character Data length Data types and attributes that can be handled (*1)

Specification length (n) Up to 10,485,760 characters (*1)

Numeric External decimal expression Up to 131,072 digits before the decimal point, and
up to 16,383 digits after the decimal point

Internal binary
expression

2 bytes From -32,768 to 32,767

4 bytes From -2,147,483,648 to 2,147,483,647

8 bytes From -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

Internal decimal expression Up to 13,1072 digits before the decimal point, and
up to 16,383 digits after the decimal point

Floating point
expression

4 bytes From -3.4E+38 to -7.1E-46, 0, or from 7.1E-46 to
3.4E+38

8 bytes From -1.7E+308 to -2.5E-324, 0, or from
2.5E-324 to 1.7E+308

bytea Up to one gigabyte minus 53 bytes

Large object Up to two gigabytes

*1: This is the character string byte length when converted by the server character set character code.

Table D.6 Function definition

Item Limit

Number of arguments that can be specified Up to 100

Number of variable names that can be specified in the declarations
section

No limit

Number of SQL statements or control statements that can be specified
in a function processing implementation

No limit

- 106 -

Table D.7 Data operation statement
Item Limit

Maximum number of connections for one process in an application
(remote access)

4,000 connections

Number of expressions that can be specified in a selection list Up to 1,664

Number of tables that can be specified in a FROM clause No limit

Number of unique expressions that can be specified in a selection list/
DISTINCT clause/ORDER BY clause/GROUP BY clause within one
SELECT statement

Up to 1,664

Number of expressions that can be specified in a GROUP BY clause No limit

Number of expressions that can be specified in an ORDER BY clause No limit

Number of SELECT statements that can be specified in a UNION
clause/INTERSECT clause/EXCEPT clause

Up to 4,000 (*1)

Number of nestings in joined tables that can be specified in one view Up to 4,000 (*1)

Number of functions or operator expressions that can be specified in
one expression

Up to 4,000 (*1)

Number of expressions that can be specified in one row constructor Up to 1,664

Number of expressions that can be specified in an UPDATE statement
SET clause

Up to 1,664

Number of expressions that can be specified in one row of a VALUES
list

Up to 1,664

Number of expressions that can be specified in a RETURNING clause Up to 1,664

Total expression length that can be specified in the argument list of one
function specification

Up to 800 megabytes (*2)

Number of cursors that can be processed simultaneously by one
session

No limit

Character string length of one SQL statement Up to 800 megabytes (*1) (*3)

Number of input parameter specifications that can be specified in one
dynamic SQL statement

No limit

Number of tokens that can be specified in one SQL statement Up to 10,000

Number of values that can be specified as a list in a WHERE clause IN
syntax

No limit

Number of expressions that can be specified in a USING clause No limit

Number of JOINs that can be specified in a joined table Up to 4,000 (*1)

Number of expressions that can be specified in COALESCE No limit

Number of WHEN clauses that can be specified for CASE in a simple
format or a searched format

No limit

Data size per record that can be updated or inserted by one SQL
statement

Up to one gigabyte minus 53 bytes

Number of objects that can share a lock simultaneously Up to 256,000 (*1)

*1: Operation might proceed correctly even if operations are performed with a quantity outside the limits.

*2: The total number of all database objects must be less than 4,294,967,296.

*3: This is the character string byte length when converted by the server character set character code.

- 107 -

Table D.8 Data sizes
Item Limit

Data size per record for input data files (COPY statement, psql command
\copy meta command)

Up to 800 megabytes (*1)

Data size per record for output data files (COPY statement, psql command
\copy meta command)

Up to 800 megabytes (*1)

*1: Operation might proceed correctly even if operations are performed with a quantity outside the limits.

- 108 -

Appendix E Reference

E.1 JDBC Driver

 See

Refer to the Java API Reference for information on PostgreSQL JDBC driver.

E.2 ODBC Driver

E.2.1 List of Supported APIs
The following table shows the support status of APIs:

Function name Support status

SQLAllocConnect Y

SQLAllocEnv Y

SQLAllocHandle Y

SQLAllocStmt Y

SQLBindCol Y

SQLBindParameter Y

SQLBindParam Y

SQLBrowseConnect Y

SQLBulkOperations Y

SQLCancel Y

SQLCancelHandle N

SQLCloseCursor Y

SQLColAttribute Y

SQLColAttributeW Y

SQLColAttributes Y

SQLColAttributesW Y

SQLColumnPrivileges Y

SQLColumnPrivilegesW Y

SQLColumns Y

SQLColumnsW Y

SQLCompleteAsync N

SQLConnect Y

SQLConnectW Y

SQLCopyDesc Y

SQLDataSources Y

SQLDataSourcesW Y

SQLDescribeCol Y

- 109 -

Function name Support status

SQLDescribeColW Y

SQLDescribeParam Y

SQLDisconnect Y

SQLDriverConnect Y

SQLDriverConnectW Y

SQLDrivers Y

SQLEndTran Y

SQLError Y

SQLErrorW Y

SQLExecDirect Y

SQLExecDirectW Y

SQLExecute Y

SQLExtendedFetch Y

SQLFetch Y

SQLFetchScroll Y

SQLForeignKeys Y

SQLForeignKeysW Y

SQLFreeConnect Y

SQLFreeEnv Y

SQLFreeHandle Y

SQLFreeStmt Y

SQLGetConnectAttr Y

SQLGetConnectAttrW Y

SQLGetConnectOption Y

SQLGetConnectOptionW Y

SQLGetCursorName Y

SQLGetCursorNameW Y

SQLGetData Y

SQLGetDescField Y

SQLGetDescFieldW Y

SQLGetDescRec Y

SQLGetDescRecW Y

SQLGetDiagField Y

SQLGetDiagFieldW Y

SQLGetDiagRec Y

SQLGetDiagRecW Y

SQLGetEnvAttr Y

SQLGetFunctions Y

SQLGetInfo Y

- 110 -

Function name Support status

SQLGetInfoW Y

SQLGetStmtAttr Y

SQLGetStmtAttrW Y

SQLGetStmtOption Y

SQLGetTypeInfo Y

SQLGetTypeInfoW Y

SQLMoreResults Y

SQLNativeSql Y

SQLNativeSqlW Y

SQLNumParams Y

SQLNumResultCols Y

SQLParamData Y

SQLParamOptions Y

SQLPrepare Y

SQLPrepareW Y

SQLPrimaryKeys Y

SQLPrimaryKeysW Y

SQLProcedureColumns Y

SQLProcedureColumnsW Y

SQLProcedures Y

SQLProceduresW Y

SQLPutData Y

SQLRowCount Y

SQLSetConnectAttr Y

SQLSetConnectAttrW Y

SQLSetConnectOption Y

SQLSetConnectOptionW Y

SQLSetCursorName Y

SQLSetCursorNameW Y

SQLSetDescField Y

SQLSetDescRec Y

SQLSetEnvAttr Y

SQLSetParam Y

SQLSetPos Y

SQLSetScrollOptions N

SQLSetStmtAttr Y

SQLSetStmtAttrW Y

SQLSetStmtOption Y

SQLSpecialColumns Y

- 111 -

Function name Support status

SQLSpecialColumnsW Y

SQLStatistics Y

SQLStatisticsW Y

SQLTablePrivileges Y

SQLTablePrivilegesW Y

SQLTables Y

SQLTablesW Y

SQLTransact Y

Y: Supported
N: Not supported

E.3 C Library (libpq)

 See

Refer to "libpq - C Library" in "Client Interfaces" in the PostgreSQL Documentation.

E.4 Embedded SQL in C

 See

Refer to "ECPG - Embedded SQL in C" in "Client Interfaces" in the PostgreSQL Documentation.

- 112 -

Index
[B]

BIND_VARIABLE.. 45

[C]
CLOSE_CURSOR..45
Code examples for applications..26
COLUMN_VALUE... 46
Comparison operator.. 3

[D]
DBMS_SQL... 43
DECODE.. 39
DEFINE_COLUMN...46
DUAL Table... 38

[E]
Encoding System Settings... 17,21
Example of specifying the hint clause......................................27
EXECUTE.. 47

[F]
FETCH_ROWS.. 47

[L]
Language settings... 6,17,20

[N]
NVL.. 42

[O]
OPEN_CURSOR..47
Outer Join Operator (+).. 36

[P]
PARSE..48
Pattern matching... 3
Precompiling example.. 27

[S]
Scan Using a Vertical Clustered Index (VCI).......................... 67
Settings for encrypting communication data for connection to the
server.. 7
String functions and operators..3
SUBSTR... 40

[W]
When setting from outside with environment variables...........21
When specifying in the connection URI...................................21

- 113 -

	Title Page
	Preface
	Contents
	Chapter 1 Overview of the Application Development Function
	1.1 Support for National Characters
	1.1.1 Literal
	1.1.2 Data Type
	1.1.3 Functions and Operator

	1.2 Compatibility with Oracle Database
	1.3 Application Connection Switch Feature
	1.3.1 Integration with Database Multiplexing

	1.4 Notes on Application Compatibility
	1.4.1 Checking Execution Results
	1.4.2 Referencing System Catalogs
	1.4.3 Using Functions

	Chapter 2 JDBC Driver
	2.1 Development Environment
	2.1.1 Combining with JDK or JRE

	2.2 Setup
	2.2.1 Environment Settings
	2.2.2 Message Language and Encoding System Used by Applications Settings
	2.2.3 Settings for Encrypting Communication Data

	2.3 Connecting to the Database
	2.3.1 Using the DriverManager Class
	2.3.2 Using the PGConnectionPoolDataSource Class
	2.3.3 Using the PGXADataSource Class

	2.4 Application Development
	2.4.1 Relationship between the Application Data Types and Database Data Types
	2.4.2 Statement Caching Feature
	2.4.3 Creating Applications while in Database Multiplexing Mode
	2.4.3.1 Errors when an Application Connection Switch Occurs and Corresponding Actions

	Chapter 3 ODBC Driver
	3.1 Development Environment
	3.2 Setup
	3.2.1 Registering ODBC Drivers
	3.2.2 Registering ODBC Data Sources
	3.2.3 Message Language and Encoding System Used by Applications Settings

	3.3 Connecting to the Database
	3.4 Application Development
	3.4.1 Compiling Applications
	3.4.2 Creating Applications While in Database Multiplexing Mode
	3.4.2.1 Errors when an Application Connection Switch Occurs and Corresponding Actions

	Chapter 4 C Library (libpq)
	4.1 Development Environment
	4.2 Setup
	4.2.1 Environment Settings
	4.2.2 Message Language and Encoding System Used by Applications Settings
	4.2.3 Settings for Encrypting Communication Data

	4.3 Connecting with the Database
	4.4 Application Development
	4.4.1 Compiling Applications
	4.4.2 Creating Applications while in Database Multiplexing Mode
	4.4.2.1 Errors when an Application Connection Switch Occurs and Corresponding Actions

	Chapter 5 Embedded SQL in C
	5.1 Development Environment
	5.2 Setup
	5.2.1 Environment Settings
	5.2.2 Message Language and Encoding System Used by Applications Settings
	5.2.3 Settings for Encrypting Communication Data

	5.3 Connecting with the Database
	5.4 Application Development
	5.4.1 Support for National Character Data Types
	5.4.2 Compiling Applications
	5.4.3 Bulk INSERT
	5.4.4 Creating Applications while in Database Multiplexing Mode
	5.4.4.1 Errors when an Application Connection Switch Occurs and Corresponding Actions

	5.4.5 Notes

	Chapter 6 SQL References
	6.1 Expanded Trigger Definition Feature
	6.1.1 CREATE TRIGGER

	Chapter 7 Compatibility with Oracle Databases
	7.1 Overview
	7.2 Precautions when Using the Features Compatible with Oracle Databases
	7.2.1 Notes on SUBSTR
	7.2.2 Notes when Integrating with the Interface for Application Development

	7.3 Queries
	7.3.1 Outer Join Operator (+)
	7.3.2 DUAL Table

	7.4 SQL Function Reference
	7.4.1 DECODE
	7.4.2 SUBSTR
	7.4.3 NVL

	7.5 Package Reference
	7.5.1 DBMS_SQL
	7.5.1.1 Description
	7.5.1.2 Example

	Chapter 8 Application Connection Switch Feature
	8.1 Connection Information for the Application Connection Switch Feature
	8.2 Using the Application Connection Switch Feature
	8.2.1 Using the JDBC Driver
	8.2.2 Using the ODBC Driver
	8.2.3 Using a Connection Service File
	8.2.4 Using the C Library (libpq)
	8.2.5 Using Embedded SQL
	8.2.6 Using the psql Command

	Chapter 9 Performance Tuning
	9.1 Enhanced Query Plan Stability
	9.1.1 Optimizer Hints
	9.1.2 Locked Statistics

	Chapter 10 Scan Using a Vertical Clustered Index (VCI)
	10.1 Operating Conditions
	10.2 Usage
	10.2.1 Designing
	10.2.2 Checking
	10.2.3 Evaluating

	10.3 Usage Notes

	Appendix A Precautions when Developing Applications
	A.1 Precautions when Using Functions and Operators
	A.1.1 General rules of Functions and Operators
	A.1.2 Errors when Developing Applications that Use Functions and/or Operators

	A.2 Notes when Using Temporary Tables
	A.3 Implicit Data Type Conversions
	A.3.1 Function Argument
	A.3.2 Operators
	A.3.3 Storing Values

	A.4 Notes on Using Index
	A.4.1 SP-GiST Index

	A.5 Notes on Using Multibyte Characters in Definition Names

	Appendix B Conversion Procedures Required due to Differences from Oracle Database
	B.1 Outer Join Operator (Perform Outer Join)
	B.1.1 Comparing with the ^= Comparison Operator

	B.2 DECODE (Compare Values and Return Corresponding Results)
	B.2.1 Comparing Numeric Data of Character String Types and Numeric Characters
	B.2.2 Obtaining Comparison Result from more than 50 Conditional Expressions
	B.2.3 Obtaining Comparison Result from Values with Different Data Types

	B.3 SUBSTR (Extract a String of the Specified Length from Another String)
	B.3.1 Specifying a Value Expression with a Data Type Different from the One that can be Specified for Function Arguments
	B.3.2 Extracting a String with the Specified Format from a Datetime Type Value
	B.3.3 Concatenating a String Value with a NULL value

	B.4 NVL (Replace NULL)
	B.4.1 Obtaining Result from Arguments with Different Data Types
	B.4.2 Operating on Datetime/Numeric, Including Adding Number of Days to a Particular Day
	B.4.3 Calculating INTERVAL Values, Including Adding Periods to a Date

	B.5 DBMS_OUTPUT (Output Messages)
	B.5.1 Outputting Messages Such As Process Progress Status
	B.5.2 Receiving a Return Value from a Procedure (PL/SQL) Block (For GET_LINES)
	B.5.3 Receiving a Return Value from a Procedure (PL/SQL) Block (For GET_LINE)

	B.6 UTL_FILE (Perform File Operation)
	B.6.1 Registering a Directory to Load and Write Text Files
	B.6.2 Checking File Information
	B.6.3 Copying Files
	B.6.4 Moving/Renaming Files

	B.7 DBMS_SQL (Execute Dynamic SQL)
	B.7.1 Searching Using a Cursor

	Appendix C Tables Used by the Features Compatible with Oracle Databases
	C.1 UTL_FILE.UTL_FILE_DIR

	Appendix D Quantitative Limits
	Appendix E Reference
	E.1 JDBC Driver
	E.2 ODBC Driver
	E.2.1 List of Supported APIs

	E.3 C Library (libpq)
	E.4 Embedded SQL in C

	Index

