
J2UL-2618-01ENZ0(00)

July 2020

Windows//Linux

FUJITSU Enterprise Postgres 12

Application Development Guide

Preface
Purpose of this document

This is a guide for the developers of FUJITSU Enterprise Postgres applications.

Intended readers

This document is intended for developers of applications that use FUJITSU Enterprise Postgres. Of the interfaces provided
by FUJITSU Enterprise Postgres, this guide describes the PostgreSQL extended interface.

Readers of this document are also assumed to have general knowledge of:

- PostgreSQL

- SQL

- Linux

- PostgreSQL

- SQL

- Windows

Structure of this document

This document is structured as follows:

Chapter 1 Overview of the Application Development Function

Provides an overview of FUJITSU Enterprise Postgres application development.

Chapter 2 JDBC Driver

Explains how to use JDBC drivers.

Chapter 3 ODBC Driver

Explains how to use ODBC drivers.

Chapter 4 .NET Data Provider

Explains how to use .NET Data Provider.

Chapter 5 C Library (libpq)

Explains how to use C applications.

Chapter 6 Embedded SQL in C

Explains how to use embedded SQL in C.

Chapter 7 Embedded SQL in COBOL

Explains how to use embedded SQL in COBOL.

Chapter 8 SQL References

Explains the SQL statements which were extended in FUJITSU Enterprise Postgres development.

Chapter 9 Compatibility with Oracle Databases

Explains features that are compatible with Oracle databases.

Chapter 10 Application Connection Switch Feature

Explains the application connection switch feature.

Chapter 11 Performance Tuning

Explains how to tune application performance.

- i -

Chapter 12 Scan Using a Vertical Clustered Index (VCI)

Explains how to perform scan using a Vertical Clustered Index (VCI).

Appendix A Precautions when Developing Applications

Provides some points to note about application development.

Appendix B Conversion Procedures Required due to Differences from Oracle Database

Explains how to convert from an Oracle database to FUJITSU Enterprise Postgres, within the scope noted in
"Compatibility with Oracle Databases" from the following perspectives.

Appendix C Tables Used by the Features Compatible with Oracle Databases

Explains the tables used by the features compatible with Oracle databases.

Appendix D ECOBPG - Embedded SQL in COBOL

Explains application development using embedded SQL in COBOL.

Appendix E Quantitative Limits

This appendix explains limitations.

Appendix F Reference

Provides a reference for each interface.

Export restrictions

Exportation/release of this document may require necessary procedures in accordance with the regulations of your
resident country and/or US export control laws.

Issue date and version

Edition 1.0: July 2020

Copyright

Copyright 2015-2020 FUJITSU LIMITED

- ii -

Contents
Chapter 1 Overview of the Application Development Function.. 1

1.1 Support for National Characters.. 2
1.1.1 Literal..2
1.1.2 Data Type..3
1.1.3 Functions and Operator...3

1.2 Integration with Visual Studio...3
1.2.1 Relationship between .NET Framework and FUJITSU Enterprise Postgres... 4
1.2.2 Automatic Application Generation...5

1.3 Compatibility with Oracle Database..6
1.4 Application Connection Switch Feature.. 6

1.4.1 Integration with Database Multiplexing... 6
1.5 Notes on Application Compatibility.. 7

1.5.1 Checking Execution Results... 7
1.5.2 Referencing System Catalogs... 7
1.5.3 Using Functions.. 8

Chapter 2 JDBC Driver...9
2.1 Development Environment.. 9

2.1.1 Combining with JDK or JRE.. 9
2.2 Setup.. 9

2.2.1 Environment Settings..9
2.2.2 Message Language and Encoding System Used by Applications Settings.. 10
2.2.3 Settings for Encrypting Communication Data..10

2.3 Connecting to the Database... 11
2.3.1 Using the DriverManager Class..11
2.3.2 Using the PGConnectionPoolDataSource Class...12
2.3.3 Using the PGXADataSource Class...13

2.4 Application Development.. 14
2.4.1 Relationship between the Application Data Types and Database Data Types... 14
2.4.2 Statement Caching Feature... 15
2.4.3 Creating Applications while in Database Multiplexing Mode... 16

2.4.3.1 Errors when an Application Connection Switch Occurs and Corresponding Actions.. 16

Chapter 3 ODBC Driver..17
3.1 Development Environment.. 17
3.2 Setup.. 17

3.2.1 Registering ODBC Drivers...17
3.2.2 Registering ODBC Data Sources(for Windows(R))...19

3.2.2.1 Registering Using GUI.. 19
3.2.2.2 Registering Using Commands... 21

3.2.3 Registering ODBC Data Sources(for Linux)..24
3.2.4 Message Language and Encoding System Used by Applications Settings.. 26

3.3 Connecting to the Database... 27
3.4 Application Development.. 27

3.4.1 Compiling Applications (for Windows (R))...27
3.4.2 Compiling Applications (for Linux)... 28
3.4.3 Creating Applications While in Database Multiplexing Mode.. 28

3.4.3.1 Errors when an Application Connection Switch Occurs and Corresponding Actions.. 29

Chapter 4 .NET Data Provider..30
4.1 Development Environment.. 30
4.2 Setup.. 30

4.2.1 Setting Up the Visual Studio Integration Add-On..30
4.2.2 Setting Up .NET Data Provider.. 31
4.2.3 Setting Up .NET Data Provider Type Plugins..31
4.2.4 Setting Up Npgsql for Entity Framework...32

- iii -

4.2.5 Message Language Settings..32
4.3 Connecting to the Database... 32

4.3.1 Using NpgsqlConnection..33
4.3.2 Using NpgsqlConnectionStringBuilder.. 33
4.3.3 Using the ProviderFactory Class.. 33
4.3.4 Connection String... 34

4.4 Application Development.. 36
4.4.1 Data Types.. 36
4.4.2 Relationship between Application Data Types and Database Data Types...38
4.4.3 Creating Applications while in Database Multiplexing Mode... 40

4.4.3.1 Errors when an Application Connection Switch Occurs and Corresponding Actions.. 40
4.4.4 Notes... 40

4.5 Uninstallation...45
4.5.1 Uninstalling Npgsql.. 45
4.5.2 Uninstalling .NET Data Provider Type Plugins... 46
4.5.3 Uninstalling Npgsql for Entity Framework.. 46

Chapter 5 C Library (libpq)... 47
5.1 Development Environment.. 47
5.2 Setup.. 47

5.2.1 Environment Settings..47
5.2.2 Message Language and Encoding System Used by Applications Settings.. 48
5.2.3 Settings for Encrypting Communication Data..49

5.3 Connecting with the Database... 49
5.4 Application Development.. 50

5.4.1 Compiling Applications..50
5.4.2 Creating Applications while in Database Multiplexing Mode... 50

5.4.2.1 Errors when an Application Connection Switch Occurs and Corresponding Actions.. 51

Chapter 6 Embedded SQL in C..52
6.1 Development Environment.. 52
6.2 Setup.. 52

6.2.1 Environment Settings..52
6.2.2 Message Language and Encoding System Used by Applications Settings.. 52
6.2.3 Settings for Encrypting Communication Data..52

6.3 Connecting with the Database... 53
6.4 Application Development.. 55

6.4.1 Support for National Character Data Types... 55
6.4.2 Compiling Applications..55
6.4.3 Bulk INSERT..57
6.4.4 DECLARE STATEMENT... 61
6.4.5 Creating Applications while in Database Multiplexing Mode... 63

6.4.5.1 Errors when an Application Connection Switch Occurs and Corresponding Actions.. 63
6.4.6 Notes... 64

Chapter 7 Embedded SQL in COBOL..65
7.1 Development Environment.. 65
7.2 Setup.. 65

7.2.1 Environment Settings..65
7.2.2 Message Language and Encoding System Used by Applications.. 65
7.2.3 Settings for Encrypting Communication Data..65

7.3 Connecting with the Database... 65
7.4 Application Development.. 67

7.4.1 Support for National Character Data Types... 67
7.4.2 Compiling Applications..69
7.4.3 Bulk INSERT..71
7.4.4 DECLARE STATEMENT... 75
7.4.5 Creating Applications while in Database Multiplexing Mode... 75

- iv -

7.4.5.1 Errors when an Application Connection Switch Occurs and Corresponding Actions.. 76

Chapter 8 SQL References.. 77
8.1 Expanded Trigger Definition Feature.. 77

8.1.1 CREATE TRIGGER...77
8.1.2 How to Define Triggers in pgAdmin..78

Chapter 9 Compatibility with Oracle Databases...79
9.1 Overview..79
9.2 Precautions when Using the Features Compatible with Oracle Databases... 79

9.2.1 Notes on SUBSTR.. 79
9.2.2 Notes when Integrating with the Interface for Application Development..80

9.3 Queries... 80
9.3.1 Outer Join Operator (+)...80
9.3.2 DUAL Table... 82

9.4 SQL Function Reference... 83
9.4.1 DECODE.. 83
9.4.2 SUBSTR... 85
9.4.3 NVL.. 86

9.5 Package Reference...87
9.5.1 DBMS_OUTPUT... 87

9.5.1.1 Description...88
9.5.1.2 Example... 90

9.5.2 UTL_FILE.. 91
9.5.2.1 Registering and Deleting Directories...92
9.5.2.2 Description...92
9.5.2.3 Example... 96

9.5.3 DBMS_SQL..97
9.5.3.1 Description...99
9.5.3.2 Example... 103

Chapter 10 Application Connection Switch Feature...105
10.1 Connection Information for the Application Connection Switch Feature...105
10.2 Using the Application Connection Switch Feature..106

10.2.1 Using the JDBC Driver...106
10.2.2 Using the ODBC Driver... 107
10.2.3 Using a .NET Data Provider... 109
10.2.4 Using a Connection Service File.. 110
10.2.5 Using the C Library (libpq).. 112
10.2.6 Using Embedded SQL.. 113
10.2.7 Using the psql Command..114

Chapter 11 Performance Tuning.. 117
11.1 Enhanced Query Plan Stability.. 117

11.1.1 Optimizer Hints...117
11.1.2 Locked Statistics... 119

Chapter 12 Scan Using a Vertical Clustered Index (VCI)...123
12.1 Operating Conditions...123
12.2 Usage... 124

12.2.1 Designing.. 125
12.2.2 Checking... 126
12.2.3 Evaluating... 127

12.3 Usage Notes... 127

Appendix A Precautions when Developing Applications.. 129
A.1 Precautions when Using Functions and Operators... 129

A.1.1 General rules of Functions and Operators... 129
A.1.2 Errors when Developing Applications that Use Functions and/or Operators..129

- v -

A.2 Notes when Using Temporary Tables...130
A.3 Implicit Data Type Conversions... 130

A.3.1 Function Argument.. 132
A.3.2 Operators..132
A.3.3 Storing Values..133

A.4 Notes on Using Index..133
A.4.1 SP-GiST Index... 133

A.5 Notes on Using Multibyte Characters in Definition Names... 133

Appendix B Conversion Procedures Required due to Differences from Oracle Database...135
B.1 Outer Join Operator (Perform Outer Join).. 135

B.1.1 Comparing with the ^= Comparison Operator...135
B.2 DECODE (Compare Values and Return Corresponding Results)..136

B.2.1 Comparing Numeric Data of Character String Types and Numeric Characters..136
B.2.2 Obtaining Comparison Result from more than 50 Conditional Expressions...136
B.2.3 Obtaining Comparison Result from Values with Different Data Types.. 137

B.3 SUBSTR (Extract a String of the Specified Length from Another String)...138
B.3.1 Specifying a Value Expression with a Data Type Different from the One that can be Specified for Function Arguments....138
B.3.2 Extracting a String with the Specified Format from a Datetime Type Value..139
B.3.3 Concatenating a String Value with a NULL value.. 139

B.4 NVL (Replace NULL).. 140
B.4.1 Obtaining Result from Arguments with Different Data Types..140
B.4.2 Operating on Datetime/Numeric, Including Adding Number of Days to a Particular Day...141
B.4.3 Calculating INTERVAL Values, Including Adding Periods to a Date... 141

B.5 DBMS_OUTPUT (Output Messages).. 142
B.5.1 Outputting Messages Such As Process Progress Status...142
B.5.2 Receiving a Return Value from a Procedure (PL/SQL) Block (For GET_LINES)...144
B.5.3 Receiving a Return Value from a Procedure (PL/SQL) Block (For GET_LINE)...146

B.6 UTL_FILE (Perform File Operation)..147
B.6.1 Registering a Directory to Load and Write Text Files...147
B.6.2 Checking File Information... 148
B.6.3 Copying Files... 152
B.6.4 Moving/Renaming Files...153

B.7 DBMS_SQL (Execute Dynamic SQL)... 154
B.7.1 Searching Using a Cursor...154

Appendix C Tables Used by the Features Compatible with Oracle Databases... 160
C.1 UTL_FILE.UTL_FILE_DIR.. 160

Appendix D ECOBPG - Embedded SQL in COBOL.. 161
D.1 Precautions when Using Functions and Operators... 161
D.2 Managing Database Connections..162

D.2.1 Connecting to the Database Server.. 162
D.2.2 Choosing a Connection.. 163
D.2.3 Closing a Connection...164

D.3 Running SQL Commands... 164
D.3.1 Executing SQL Statements.. 164
D.3.2 Using Cursors...165
D.3.3 Managing Transactions..165
D.3.4 Prepared Statements...165

D.4 Using Host Variables.. 166
D.4.1 Overview..166
D.4.2 Declare Sections...166
D.4.3 Retrieving Query Results...167
D.4.4 Type Mapping..168
D.4.5 Handling Nonprimitive SQL Data Types.. 172
D.4.6 Indicators..176

D.5 Dynamic SQL... 176

- vi -

D.5.1 Executing Statements without a Result Set... 176
D.5.2 Executing a Statement with Input Parameters... 177
D.5.3 Executing a Statement with a Result Set... 177

D.6 Using Descriptor Areas...178
D.6.1 Named SQL Descriptor Areas... 178

D.7 Error Handling.. 180
D.7.1 Setting Callbacks... 180
D.7.2 sqlca... 181
D.7.3 SQLSTATE vs. SQLCODE...182

D.8 Preprocessor Directives.. 185
D.8.1 Including Files... 185
D.8.2 The define and undef Directives.. 186
D.8.3 ifdef, ifndef, else, elif, and endif Directives.. 186

D.9 Processing Embedded SQL Programs.. 187
D.10 Large Objects.. 187
D.11 Embedded SQL Commands..187

D.11.1 ALLOCATE DESCRIPTOR... 188
D.11.2 CONNECT...189
D.11.3 DEALLOCATE DESCRIPTOR..191
D.11.4 DECLARE... 191
D.11.5 DESCRIBE.. 192
D.11.6 DISCONNECT.. 193
D.11.7 EXECUTE IMMEDIATE... 194
D.11.8 GET DESCRIPTOR.. 194
D.11.9 OPEN... 196
D.11.10 PREPARE.. 197
D.11.11 SET AUTOCOMMIT..198
D.11.12 SET CONNECTION... 198
D.11.13 SET DESCRIPTOR... 199
D.11.14 TYPE..200
D.11.15 VAR... 201
D.11.16 WHENEVER... 202

D.12 PostgreSQL Client Applications...203
D.12.1 ecobpg.. 203

Appendix E Quantitative Limits...205

Appendix F Reference..210
F.1 JDBC Driver.. 210
F.2 ODBC Driver...210

F.2.1 List of Supported APIs... 210
F.3 .NET Data Provider... 213
F.4 C Library (libpq)..213
F.5 Embedded SQL in C..213

Index...214

- vii -

Chapter 1 Overview of the Application Development
Function

The interface for application development provided by FUJITSU Enterprise Postgres is perfectly compatible with
PostgreSQL.

Along with the PostgreSQL interface, FUJITSU Enterprise Postgres also provides the following extended interfaces:

- Support for National Characters

In order to secure portability from mainframes and databases of other companies, FUJITSU Enterprise Postgres provides
data types that support national characters. The national characters are usable from the client application languages.

Refer to "1.1 Support for National Characters" for details.

- Integration with Visual Studio

By integrating with Visual Studio, applications can be created using a standard framework for the building of a database
server.

Refer to "1.2 Integration with Visual Studio" for details.

- Compatibility with Oracle Databases

Compatibility with Oracle databases is offered. Use of the compatible features means that the revisions to existing
applications can be isolated, and migration to open interfaces is made simpler.

Refer to "1.3 Compatibility with Oracle Database" for details.

- Application connection switch feature

The application connection switch feature is provided to enable automatic connection to the target server when there are
multiple servers with redundant configurations.

Refer to "1.4 Application Connection Switch Feature" for details.

- 1 -

- Performance tuning

The following features are provided to control SQL statement query plans:

- Optimizer hints

- Locked statistics

Refer to "11.1 Enhanced Query Plan Stability" for details.

- Scanning using a Vertical Clustered Index (VCI)

Scans becomes faster during aggregation of many rows by providing the features below:

- Vertical clustered index (VCI)

- In-memory data

This feature can only be used in Advanced Edition.

Refer to "Chapter 12 Scan Using a Vertical Clustered Index (VCI)" for details.

1.1 Support for National Characters
NCHAR type is provided as the data type to deal with national characters.

The NCHAR type can be used with FUJITSU Enterprise Postgres pgAdmin.

 Point

- NCHAR can only be used when the character set of the database is UTF-8.

- NCHAR can be used in the places where CHAR can be used (function arguments, etc.).

- For applications handling NCHAR type data in the database, the data format is the same as CHAR type. Therefore,
applications handling data in NCHAR type columns can also be used to handle data stored in CHAR type columns.

 Note

Note the following in order to cast NCHAR type data as CHAR type.

- When comparing NCHAR type data where the length differs, ASCII spaces are used to fill in the length of the shorter
NCHAR type data so that it can be processed as CHAR type data.

- Depending on the character set, the data size may increase by between 1.5 and 2 times.

1.1.1 Literal
Syntax

{ N | n }'[national character [...]]'

General rules

National character string literals consist of an 'N' or 'n', and the national character is enclosed in single quotation marks
('). Example: N'ABCDEF'

The data type is national character string type.

- 2 -

1.1.2 Data Type
Syntax

{ NATIONAL CHARACTER | NATIONAL CHAR | NCHAR } [VARYING][(length)]

The data type of the NCHAR type column is as follows:

Data type specification format Explanation

NATIONAL CHARACTER(n)

NATIONAL CHAR(n)

NCHAR(n)

National character string with a fixed length of n characters

This will be the same as (1) if (n) is omitted.

n is a whole number larger than 0.

NATIONAL CHARACTER
VARYING(n)

NATIONAL CHAR VARYING(n)

NCHAR VARYING(n)

National character string with a variable length with a
maximum of n characters

Any length of national character string can be accepted when
this is omitted.

n is a whole number larger than 0.

General rules

NCHAR is the national character string type data type. The length is the number of characters.

The length of the national character string type is as follows:

- When VARYING is not specified, the length of national character strings is fixed and will be the specified length.

- When VARYING is specified, the length of national character strings will be variable.
In this case, the lower limit will be 0 and the upper limit will be the value specified for length.

- NATIONAL CHARACTER, NATIONAL CHAR, and NCHAR each have the same meaning.

When the national character string to be stored is shorter than the declared upper limit, the NCHAR value is filled with
spaces, whereas NCHAR VARYING is stored as is.

The upper limit for character storage is approximately 1GB.

1.1.3 Functions and Operator
Comparison operator

When a NCHAR type or NCHAR VARYING type is specified in a comparison operator, comparison is only possible
between NCHAR types or NCHAR VARYING types.

String functions and operators

All of the string functions and operators that can be specified by a CHAR type can also be specified by a NCHAR type.
The behavior of these string functions and operators is also the same as with CHAR type.

Pattern matching (LIKE, SIMILAR TO regular expression, POSIX regular expression)

The patterns specified when pattern matching with NCHAR types and NCHAR VARYING types specify the percent sign
(%) and the underline (_).

The underline (_) means a match with one national character. The percent sign (%) means a match with any number of
national characters 0 or over.

1.2 Integration with Visual Studio
When developing an application to access database server resources, you can create applications and build database server
environments integrated with Microsoft Visual Studio.

- 3 -

Refer to "Chapter 4 .NET Data Provider" for information on integration with Visual Studio.

1.2.1 Relationship between .NET Framework and FUJITSU
Enterprise Postgres

FUJITSU Enterprise Postgres provides .NET Data Provider, which is an interface for ADO.NET of .NET Framework. This
enables you to select FUJITSU Enterprise Postgres as the connection destination database of ADO.NET and use the intuitive
and efficient application development features of Visual Studio.

The following provides an overview of application development integrated with Visual Studio.

Edit directory in Visual Studio's text editor

By using a component specified in Visual Studio, applications to access database resources can be created manually.

Create an application with Visual Studio tools

By using basic drag-and-drop operations in the tools provided in Visual Studio, programs to access database resources can
be generated automatically.

- 4 -

1.2.2 Automatic Application Generation
The Visual Studio tools used to automatically generate applications include TableAdapter and Server Explorer, which enable
the following:

- Data manipulation of database resources with TableAdapter

- Management of database resources with Server Explorer

Whether you use TableAdapter or the Server Explorer, programs can be created with basic operations like drag and drop with
the resources and tools that comprise Visual Studio.

- 5 -

The following features are available with TableAdapter and Server Explorer:

- Manipulation of database resources with TableAdapter

- Generating queries using existing tables/views

- Generating methods using existing tables/views

- Management of database resources with Server Explorer

- Listing of database resources

- Generating queries using existing tables/views

- Generating methods using existing tables/views

1.3 Compatibility with Oracle Database
The following features have been extended in order to enhance compatibility with Oracle databases:

- Query (external join operator (+), DUAL table)

- Function (DECODE, SUBSTR, NVL)

- Built-in package (DBMS_OUTPUT, UTL_FILE, DBMS_SQL)

Refer to "Chapter 9 Compatibility with Oracle Databases" for information on the features compatible with Oracle databases.

1.4 Application Connection Switch Feature
The application connection switch feature enables automatic connection to the target server when there are multiple servers
with redundant configurations.

Refer to " Chapter 10 Application Connection Switch Feature " for information on the application connection switch feature.

1.4.1 Integration with Database Multiplexing
The application connection switch feature is provided to enable automatic connection to the appropriate server when there
are multiple servers with redundant configurations.

- 6 -

 See

Refer to the Cluster Operation Guide (Database Multiplexing) for information on database multiplexing.

1.5 Notes on Application Compatibility
FUJITSU Enterprise Postgres upgrades contain feature improvements and enhancements that may affect the applications.

Accordingly, note the points below when developing applications, to ensure compatibility after upgrade.

- Checking execution results

- Referencing system catalogs

- Using functions

1.5.1 Checking Execution Results
Refer to SQLSTATE output in messages to check the SQL statements used in applications and the execution results of
commands used during development.

 See

Refer to Messages for information on the message content and number.

Refer to "PostgreSQL Error Codes" under "Appendixes" in the PostgreSQL Documentation for information on SQLSTATE.

1.5.2 Referencing System Catalogs
System catalogs can be used to obtain information about the FUJITSU Enterprise Postgres system and database objects.

However, system catalogs may change when the FUJITSU Enterprise Postgres version is upgraded. Also, there are many
system catalogs that return information that is inherent to FUJITSU Enterprise Postgres.

Accordingly, reference the information schema defined in standard SQL (information_schema) wherever possible. Note also
that queries specifying "*" in the selection list must be avoided to prevent columns being added.

 See

Refer to "The Information Schema" under "Client Interfaces" in the PostgreSQL Documentation for details.

The system catalog must be referenced to obtain information not found in the information schema. Instead of directly
referencing the system catalog in the application, define a view for that purpose. Note, however, that when defining the view,
the column name must be clearly specified after the view name.

An example of defining and using a view is shown below.

 Example

CREATE VIEW my_tablespace_view(spcname) AS SELECT spcname FROM pg_tablespace;

SELECT * FROM my_tablespace_view V1, pg_tables T1 WHERE V1.spcname = T1.tablespace;

If changes are made to a system catalog, the user will be able to take action by simply making changes to the view, without
the need to make changes to the application.

The following shows an example of taking action by redefining a view as if no changes were made.

The pg_tablespace system catalog is redefined in response to the column name being changed from spcname to spacename.

- 7 -

 Example

DROP VIEW my_tablespace_view;

CREATE VIEW my_tablespace_view(spcname) AS SELECT spacename FROM pg_tablespace;

1.5.3 Using Functions
The default functions provided with FUJITSU Enterprise Postgres enable a variety of operations and manipulations to be
performed, and information to be obtained, using SQL statements.

However, it is possible that internal FUJITSU Enterprise Postgres functions, such as those relating to statistical information
or for obtaining system-related information, may change as FUJITSU Enterprise Postgres versions are upgraded.

Accordingly, when using these functions, define them as new functions and then use the newly-defined functions in the
applications.

An example of defining and using a function is shown below.

 Example

CREATE FUNCTION my_func(relid regclass) RETURNS bigint LANGUAGE SQL AS 'SELECT

pg_relation_size(relid)';

SELECT my_func(2619);

If changes are made to a function, the user will be able to take action by simply redefining the function, without the need to
make changes to the application.

The following shows an example of taking action by redefining a function as if no changes were made.

The pg_relation_size function is redefined after arguments are added.

 Example

DROP FUNCTION my_func(regclass);

CREATE FUNCTION my_func(relid regclass) RETURNS bigint LANGUAGE SQL AS 'SELECT

pg_relation_size(relid,$$main$$)';

- 8 -

Chapter 2 JDBC Driver
This section describes how to use JDBC drivers.

2.1 Development Environment
This section describes application development using JDBC drivers and the runtime environment.

2.1.1 Combining with JDK or JRE
Refer to Installation and Setup Guide for Client for information on combining with JDK or JRE where JDBC drivers can
operate.

2.2 Setup
This section describes the environment settings required to use JDBC drivers and how to encrypt communication data.

2.2.1 Environment Settings
Configuration of the CLASSPATH environment variable is required as part of the runtime environment for JDBC drivers.

The name of the JDBC driver file is as follows:

- If using JDK 6 or JRE 6

postgresql-jdbc4.jar

- If using JDK 7 or JRE 7

postgresql-jdbc41.jar

- If using JDK 8, JRE 8, JDK 11 or JRE 11

postgresql-jdbc42.jar

The examples below show how to set the CLASSPATH environment variable if JDK 6 or JRE 6 is used.

If JDK 7, JRE 7, JDK 8, JRE 8, JDK 11 or JRE 11 is used, only the name of the JDBC driver file will be different. The method
for configuring the CLASSPATH environment variable is the same.

Note that "<x>" indicates the product version.

- Linux (64-bit)

- Setting example (TC shell)

setenv CLASSPATH /opt/fsepv<x>client64/jdbc/lib/postgresql-jdbc4.jar:${CLASSPATH}

- Setting example (bash)

CLASSPATH=/opt/fsepv<x>client64/jdbc/lib/postgresql-jdbc4.jar:$CLASSPATH;export

CLASSPATH

- Windows (32-bit)

- Setting example

set CLASSPATH=C:\Program Files\Fujitsu\fsepv<x>client32\JDBC\lib\postgresql-

jdbc4.jar;%CLASSPATH%

- 9 -

- Windows (64-bit)

- Setting example (when FUJITSU Enterprise Postgres Client 32-bit is installed)

set CLASSPATH=C:\Program Files (x86)\Fujitsu\fsepv<x>client32\JDBC\lib\postgresql-

jdbc4.jar;%CLASSPATH%

- Setting example (when FUJITSU Enterprise Postgres Client 64-bit is installed)

set CLASSPATH=C:\Program Files\Fujitsu\fsepv<x>client64\JDBC\lib\postgresql-

jdbc4.jar;%CLASSPATH%

2.2.2 Message Language and Encoding System Used by
Applications Settings

If the JDBC driver is used, it will automatically set the encoding system on the client to UTF-8, so there is no need to configure
this.

 See

Refer to "Automatic Character Set Conversion Between Server and Client" in "Server Administration" in the PostgreSQL
Documentation for information on encoding systems.

Language settings

You must match the language settings for the application runtime environment with the message locale settings of the
database server.

Set language in the "user.language" system property.

 Example

Example of running a Java command with system property specified

java -Duser.language=en TestClass1

2.2.3 Settings for Encrypting Communication Data
When using the communication data encryption feature to connect to the database server, set as follows:

Settings for encrypting communication data for connection to the server

This section describes how to create applications for encrypting communication data.

Set the property of the SSL parameter to "true" to encrypt. The default for the SSL parameter is "false".

If ssl is set to "true", sslmode is internally treated as "verify-full".

 Example

- Setting example 1

String url = "jdbc:postgresql://sv1/test";

Properties props = new Properties();

props.setProperty("user","fsepuser");

props.setProperty("password","secret");

props.setProperty("ssl","true");

- 10 -

props.setProperty("sslfactory","org.postgresql.ssl.DefaultJavaSSLFactory");

Connection conn = DriverManager.getConnection(url, props);

- Setting example 2

String url = "jdbc:postgresql://sv1/test?

user=fsepuser&password=secret&ssl=true&sslfactory=org.postgresql.ssl.DefaultJavaSSLF

actory";

Connection conn = DriverManager.getConnection(url);

To prevent spoofing of the database server, you need to use the keytool command included with Java to import the CA
certificate to the Java keystore. In addition, specify "org.postgresql.ssl.DefaultJavaSSLFactory" for the sslfactory parameter.
Refer to JDK documentation and the Oracle website for details.

 Note

There is no need to set the ssl parameter if the connection string of the DriverManager class is specified, or if the sslmode
parameter is specified in the data source, such as when the application connection switch feature is used. If the ssl parameter
is set, the value in the sslmode parameter will be enabled.

 See

Refer to "Secure TCP/IP Connections with SSL" in "Server Administration" in the PostgreSQL Documentation for
information on encrypting communication data.

2.3 Connecting to the Database
This section explains how to connect to a database.

- Using the DriverManager Class

- Using the PGConnectionPoolDataSource Class

- Using the PGXADataSource Class

 Note

Do not specify "V2" for the "protocolVersion" of the connection string.

2.3.1 Using the DriverManager Class
To connect to the database using the DriverManager class, first load the JDBC driver, then specify the connection string as
a URI in the API of the DriverManager class.

Load the JDBC driver

Specify org.postgresql.Driver.

Connection string

URI connection is performed as follows:

jdbc:postgresql://host:port/database?

user=user&password=password1&loginTimeout=loginTimeout&socketTimeout=socketTimeout

Argument Description

host Specify the host name for the connection destination.

- 11 -

Argument Description

port Specify the port number for the database server.

The default is "27500".

database Specify the database name.

user Specify the username that will connect with the database.

If this is omitted, the username logged into the operating system that is executing the
application will be used.

password Specify a password when authentication is required.

loginTimeout Specify the timeout for connections (in units of seconds).

Specify a value between 0 and 2147483647. There is no limit set if you set 0 or an invalid
value.

An error occurs when a connection cannot be established within the specified time.

socketTimeout Specify the timeout for communication with the server (in units of seconds).

Specify a value between 0 and 2147483647. There is no limit set if you set 0 or an invalid
value.

An error occurs when data is not received from the server within the specified time.

 Example

Code examples for applications

import java.sql.*;

...

Class.forName("org.postgresql.Driver");

String url = "jdbc:postgresql://sv1:27500/mydb?

user=myuser&password=myuser01&loginTimeout=20&socketTimeout=20";

Connection con = DriverManager.getConnection(url);

2.3.2 Using the PGConnectionPoolDataSource Class
To connect to databases using data sources, specify the connection information in the properties of the data source.

Method description

Argument Description

setServerName Specify the host name for the connection destination.

setPortNumber Specify the port number for the database server.

The default is "27500".

setDatabaseName Specify the database name.

setUser Specify the username of the database.

By default, the name used will be that of the user on the operating system that is
executing the application.

setPassword Specify a password for server authentication.

setLoginTimeout Specify the timeout for connections (in units of seconds).

Specify a value between 0 and 2147483647. There is no limit set if you set 0 or an
invalid value.

An error occurs when a connection cannot be established within the specified time.

- 12 -

Argument Description

setSocketTimeout Specify the timeout for communication with the server (in units of seconds).

Specify a value between 0 and 2147483647. There is no limit set if you set 0 or an
invalid value.

An error occurs when data is not received from the server within the specified time.

 Example

Code examples for applications

import java.sql.*;

import org.postgresql.ds.PGConnectionPoolDataSource;

...

PGConnectionPoolDataSource source = new PGConnectionPoolDataSource();

source.setServerName("sv1");

source.setPortNumber(27500);

source.setDatabaseName("mydb");

source.setUser("myuser");

source.setPassword("myuser01");

source.setLoginTimeout(20);

source.setSocketTimeout(20);

...

Connection con = source.getConnection();

2.3.3 Using the PGXADataSource Class
To connect to databases using data sources, specify the connection information in the properties of the data source.

Method description

Argument Description

setServerName Specify the host name for the connection destination.

setPortNumber Specify the port number for the database server.

The default is "27500".

setDatabaseName Specify the database name.

setUser Specify the username that will connect with the database.

If this is omitted, the name used will be that of the user on the operating system that
is executing the application.

setPassword Specify a password when authentication by a password is required.

setLoginTimeout Specify the timeout for connections.

The units are seconds. Specify a value between 0 and 2147483647. There is no limit
set if you set 0 or an invalid value.

An error occurs when a connection cannot be established within the specified time.

setSocketTimeout Specify the timeout for communication with the server.

The units are seconds. Specify a value between 0 and 2147483647. There is no limit
set if you set 0 or an invalid value.

An error occurs when data is not received from the server within the specified time.

- 13 -

 Example

Code examples for applications

import java.sql.*;

import org.postgresql.xa.PGXADataSource;

...

PGXADataSource source = new PGXADataSource();

source.setServerName("sv1");

source.setPortNumber(27500);

source.setDatabaseName("mydb");

source.setUser("myuser");

source.setPassword("myuser01");

source.setLoginTimeout(20);

source.setSocketTimeout(20);...

Connection con = source.getConnection();

2.4 Application Development
This section describes the data types required when developing applications that will be connected with FUJITSU Enterprise
Postgres.

2.4.1 Relationship between the Application Data Types and
Database Data Types

The following table shows the correspondence between data types in applications and data types in databases.

Data type on the server Java data type
Data types prescribed by

java.sql.Types

character String java.sql.Types.CHAR

national character String java.sql.Types.NCHAR

character varying String java.sql.Types.VARCHAR

national character varying String java.sql.Types.NVARCHAR

text String java.sql.Types.VARCHAR

bytea byte[] java.sql.Types.BINARY

smallint short java.sql.Types.SMALLINT

integer int java.sql.Types.INTEGER

bigint long java.sql.Types.BIGINT

smallserial short java.sql.Types.SMALLINT

serial int java.sql.Types.INTEGER

bigserial long java.sql.Types.BIGINT

real float java.sql.Types.REAL

double precision double java.sql.Types.DOUBLE

numeric java.math.BigDecimal java.sql.Types.NUMERIC

decimal java.math.BigDecimal java.sql.Types.DECIMAL

money String java.sql.Types.OTHER

date java.sql.Date java.sql.Types.DATE

time with time zone java.sql.Time java.sql.Types.TIME

- 14 -

Data type on the server Java data type
Data types prescribed by

java.sql.Types

time without time zone java.sql.Time java.sql.Types.TIME

timestamp without time zone java.sql.Timestamp java.sql.Types.TIMESTAMP

timestamp with time zone java.sql.Timestamp java.sql.Types.TIMESTAMP

interval org.postgresql.util.PGInterval java.sql.Types.OTHER

boolean boolean java.sql.Types.BIT

bit boolean java.sql.Types.BIT

bit varying org.postgresql.util.Pgobject java.sql.Types.OTHER

oid long java.sql.Types.BIGINT

xml java.sql.SQLXML java.sql.Types.SQLXML

array java.sql.Array java.sql.Types.ARRAY

uuid java.util.UUID java.sql.Types.OTHER

point org.postgresql.geometric.Pgpoint java.sql.Types.OTHER

box org.postgresql.geometric.Pgbox java.sql.Types.OTHER

lseg org.postgresql.geometric.Pglseg java.sql.Types.OTHER

path org.postgresql.geometric.Pgpath java.sql.Types.OTHER

polygon org.postgresql.geometric.PGpolygon java.sql.Types.OTHER

circle org.postgresql.geometric.PGcircle java.sql.Types.OTHER

json org.postgresql.util.PGobject java.sql.Types.OTHER

Network address type
(inet,cidr,macaddr, macaddr8) org.postgresql.util.PGobject java.sql.Types.OTHER

Types related to text searches
(svector, tsquery) org.postgresql.util.PGobject java.sql.Types.OTHER

Enumerated type org.postgresql.util.PGobject java.sql.Types.OTHER

Composite type org.postgresql.util.PGobject java.sql.Types.OTHER

Range type org.postgresql.util.PGobject java.sql.Types.OTHER

Although the getString() method of the ResultSet object can be used for all server data types, it is not guaranteed that it will
always return a string in the same format for the same data type.

Strings in a format compatible with the JDBC specifications can be obtained using the Java toString() method of the
appropriate data type (for example, getInt(), getTimestamp()) to conform to the data type on the server.

2.4.2 Statement Caching Feature
The statement caching feature caches SQL statements for each individual connection. This means that when an SQL
statement with an identical string is next executed, the analysis and creation of the statement can be skipped. This improves
performance in cases such as when an SQL statement with an identical string is executed within a loop or method that is
executed repeatedly. Furthermore, the statement caching feature can be combined with the connection pooling feature to
further enhance performance.

Cache registration controls

You can configure whether to cache SQL statements using the setPoolable(boolean) method of the PreparedStatement class
when the statement caching feature is enabled.

Values that can be configured are shown below:

- 15 -

false

SQL statements will not be cached, even when the statement caching feature is enabled.

true

SQL statements will be cached if the statement caching feature is enabled.

2.4.3 Creating Applications while in Database Multiplexing Mode
This section explains points to consider when creating applications while in database multiplexing mode.

 See

- Refer to the Cluster Operation Guide (Database Multiplexing) for information on database multiplexing mode.

- Refer to "Application Development" in the Cluster Operation Guide (PRIMECLUSTER) for points to consider when
creating applications using the failover feature integrated with the cluster software.

2.4.3.1 Errors when an Application Connection Switch Occurs and
Corresponding Actions

If an application connection switch occurs while in database multiplexing mode, explicitly close the connection and then
reestablish the connection or reexecute the application.

The table below shows errors that may occur during a switch, and the corresponding action to take.

State Error information

(*1)
Action

Server failure
or
FUJITSU Enterprise Postgres
system failure

Failure occurs
during access

57P01

08006

08007

After the switch is
complete, reestablish the
connection, or reexecute
the application.

Accessed during
system failure

08001

Switch to the standby server Switched during
access

57P01

08006

08007

Accessed during
switch

08001

*1: Return value of the getSQLState() method of SQLException.

- 16 -

Chapter 3 ODBC Driver
This section describes application development using ODBC drivers.

3.1 Development Environment
Applications using ODBC drivers can be developed using ODBC interface compatible applications, such as Access, Excel,
and Visual Basic.

Refer to the manuals for the programming languages corresponding to the ODBC interface for information about the
environment for development.

FUJITSU Enterprise Postgres supports ODBC 3.5.

3.2 Setup
You need to set up PsqlODBC, which is an ODBC driver, in order to use applications that use ODBC drivers with FUJITSU
Enterprise Postgres. PsqlODBC is included in the FUJITSU Enterprise Postgres client package.

The following describes how to register the ODBC drivers and the ODBC data source.

3.2.1 Registering ODBC Drivers
When using the ODBC driver on Linux , register the ODBC driver using the following procedure:

1. Install the ODBC driver manager (unixODBC)

 Information

- FUJITSU Enterprise Postgres supports unixODBC Version 2.3 or later.

You can download unixODBC from the following site:

http://www.unixodbc.org/

- To execute unixODBC, you must first install libtool 2.2.6 or later.

You can download libtool from the following website:

http://www.gnu.org/software/libtool/

[Note]

- ODBC driver operation is supported.

- unixODBC operation is not supported.

2. Register the ODBC drivers

Edit the ODBC driver manager (unixODBC) odbcinst.ini file.

 Information

[location of the odbcinst.ini file]

unixOdbcInstallDir/etc/odbcinst.ini

Set the following content:

- 17 -

Definition
name

Description Setting value

[Driver
name]

ODBC
driver
name

Set the name of the ODBC driver.

Select the two strings below that correspond to the application type.
Concatenate the strings with no spaces, enclose in "[]", and then
specify this as the driver name.

 Note

The placeholders shown below are enclosed in angle brackets '<>' to
avoid confusion with literal text. Do not include the angle brackets in
the string.

- Application architecture

"FUJITSUEnterprisePostgres<fujitsuEnterprisePostgresClientVe
rs>x64"

- Encoding system used by the application

- In Unicode (only UTF-8 can be used)

"unicode"

- Other than Unicode

"ansi"

Example: The encoding system used by the application is Unicode:

"[FUJITSUEnterprisePostgres<fujitsuEnterprisePostgresClientVers>
x64unicode]"

Descriptio
n

Descriptio
n of the
ODBC
driver

Specify a supplementary description for the current data source. Any
description may be set.

Driver64 Path of the
ODBC
driver (64-
bit)

Set the path of the ODBC driver (64-bit).

- If the encoding system is Unicode:

fujitsuEnterprisePostgresClientInstallDir/

odbc/lib/psqlodbcw.so

- If the encoding system is other than Unicode:

fujitsuEnterprisePostgresClientInstallDir/

odbc/lib/psqlodbca.so

FileUsage Use of the
data
source file

Specify 1.

Threading Level of
atomicity
secured
for
connectio
n pooling

Specify 2.

- 18 -

 Example

Note that "<x>" indicates the product version.

[FUJITSU Enterprise Postgres12x64unicode]

Description = FUJITSU Enterprise Postgres 12 x64 unicode driver

Driver64 = /opt/fsepv<x>client64/odbc/lib/psqlodbcw.so

FileUsage = 1

Threading = 2

3.2.2 Registering ODBC Data Sources(for Windows(R))
This section describes how to register ODBC data sources.

There are the following two ways to register ODBC data sources on Windows(R).

3.2.2.1 Registering Using GUI
This section describes how to start the [ODBC Data Source Administrator] and register ODBC data sources.

Use the following procedure to register ODBC data sources:

1. Start the [ODBC Data Source Administrator].

Select [Start] >> [Control Panel] >> [Administrative Tools] >> [ODBC Data Source Administrator].

 Note

To register data sources for 32-bit applications in Windows(R) for 64-bit, execute the ODBC administrator
(odbcad32.exe) for 32-bit, as shown below.

%SYSTEMDRIVE%\WINDOWS\SysWOW64\odbcad32.exe

2. When only the current user is to use the ODBC data source, select [User DSN]. When all users using the same computer
are to use the ODBC data source, select [System DSN].

3. Click [Add].

4. Select one of the following drivers from the list of available ODBC drivers displayed in [Create New Data Source], and
then click [Finish]. The notation "x" indicates the version of the FUJITSU Enterprise Postgres client feature.

- FUJITSU Enterprise Postgres Unicode x
Select this driver if using Unicode as the application encoding system.

- FUJITSU Enterprise Postgres ANSI x
Select this driver if using other than Unicode as the application encoding system.

- 19 -

5. The [PostgreSQL ANSI ODBC Driver (psqlODBC) Setup] window is displayed. Enter or select the required items,
then click [Save].

Set the following content:

Definition

name
Setting value

Data Source Specify the data source name to be registered in the ODBC driver manager. The
application will select the name specified here and connect with the FUJITSU
Enterprise Postgres database. This parameter cannot be omitted. Specify the
following characters up to 32 bytes.

- National characters

- Alphanumerics

- "_", "<", ">", "+", "`", "|", "~", "'" " "&" , """, "#" , "$" , "%" , "-" , "^" , ":" ,
"/" , "."

Description Specify a supplementary description for the current data source. Specify
characters up to 255 bytes.

- National characters

- Alphanumerics

Database Specify the database name to be connected.

SSLMode Specify to encrypt communications. The default is "disable".

The setting values for SSLMode are as follows:

- disable: Connect without SSL

- allow: Connect without SSL, and if it fails, connect using SSL

- prefer: Connect using SSL, and if it fails, connect without SSL

- require: Connect always using SSL

- verify-ca: Connect using SSL, and use a certificate issued by a trusted CA
(*1)

- verify-full: Connect using SSL, and use a certificate issued by a trusted CA
to verify if the server host name matches the certificate (*1)

- 20 -

Definition
name

Setting value

Server Specify the host name of the database server to connect to, using up to 63 bytes.
This parameter cannot be omitted.

Port Specify the port number to be used for remote access. The default value is
"27500".

Username(*2) Specify the user that will access the database.

Password(*2) Specify the password for the user that will access the database.

*1: If specifying either "verify-ca" or "verify-full", use the system environment variable PGSSLROOTCERT of your
operating system to specify the CA certificate file as shown below.

Example:

Variable name: PGSSLROOTCERT

Variable value: cACertificateFile

*2: In consideration of security, specify the Username and the Password by the application.

3.2.2.2 Registering Using Commands
This section describes how to use commands to register ODBC data sources.

Use the following tools from Microsoft to register ODBC data sources.

- ODBCConf.exe

- Add-OdbcDsn

Refer to the Microsoft Developer Network (MSDN) Library for information on how to use these tools.

When using ODBCConf.exe

ODBCConf.exe is a tool supported on all Windows(R) platforms.

Specification format

ODBCConf.exe /A { dataSourceType "odbcDriverName" "optionName=value[|

optionName=value...]"} [/Lv fileName]

Refer to the Microsoft MSDN library for information on the format and parameters.

Description

Set the following content:

Definition

name
Setting value

Data source
type

Specify the data source type.

- "CONFIGSYSDSN": A system data source is created. This requires user
admin rights. The data source can be used by all users of the same computer.

- "CONFIGDSN": A user data source is created. The data source can be used by
the current user only.

 Note

When CONFIGSYSDSN is specified as the data source type, it is necessary to
execute the command in the command prompt in administrator mode.

- 21 -

Definition
name

Setting value

ODBC driver
name

Specify an ODBC driver name that has already been registered on the system.

Specify one of the following.

 Note

The placeholders shown below are enclosed in angle brackets '<>' to avoid
confusion with literal text. Do not include the angle brackets in the string.

- "FUJITSU Enterprise Postgres Unicode
<fujitsuEnterprisePostgresClientVers>"
Specify this driver name if using Unicode as the application encoding system.

- "FUJITSU Enterprise Postgres ANSI
<fujitsuEnterprisePostgresClientVers>"
Specify this driver name if using other than Unicode as the application
encoding system.

Option name The following items must be set:

- "DSN": Specify the data source name.

- "Servername": Specify the host name for the database server.

- "Port": Specify the port number for connection to the database

- "Database": Specify the database name.

Specify the following values as required:

- "UID": User ID

- "Password": Password

- "SSLMode": Specify to encrypt communications. The default is "disable".
Refer to the SSLMode explanation in the table under step 5 of "3.2.2.1
Registering Using GUI" for information on how to configure SSLMode.

File Name You can output process information to a file when creating a data source. This
operand can be omitted.

 Example

ODBCConf.exe /A {CONFIGSYSDSN "FUJITSU Enterprise Postgres Unicode 12" "DSN=odbcconf1|

Servername=sv1|Port=27500|Database=db01|SSLMode=verify-ca"} /Lv log.txt

 Note

In consideration of security, specify the UID and the Password by the application.

When using Add-OdbcDsn

Add-OdbcDsn is used in the PowerShell command interface.

Specification format

Add-OdbcDsn dataSourceName -DriverName "odbcDriverName" -DsnType dataSourceType -

Platform oSArchitecture -SetPropertyValue @("optionName=value" [,"optionName=value"...])

- 22 -

Refer to the Microsoft MSDN library for information on the format and parameters.

Description

Set the following content:

Definition

name
Setting value

Data source
name

Specify any name for the data source name.

ODBC driver
name

Specify an ODBC driver name that has already been registered on the system.
Specify one of the following.

 Note

The placeholders shown below are enclosed in angle brackets '<>' to avoid
confusion with literal text. Do not include the angle brackets in the string.

- "FUJITSU Enterprise Postgres Unicode
<fujitsuEnterprisePostgresClientVers>"
Specify this driver name if using Unicode as the application encoding system.

- "FUJITSU Enterprise Postgres ANSI
<fujitsuEnterprisePostgresClientVers>"
Specify this driver name if using other than Unicode as the application
encoding system.

Data source
type

Specify the data source type.

- "System": A system data source is created. Requires user admin rights. The
data source can be used by all users of the same computer.

- "User": A user data source is created. The data source can be used by the
current user only.

 Note

When System is specified as the data source type, it is necessary to execute the
command in the administrator mode of the command prompt.

OS
architecture

Specify the OS architecture of the system.

- "32-bit": 32-bit system

- "64-bit": 64-bit system

Option name The following items must be set:

- "Servername": Specify the host name for the database server.

- "Port": Specify the port number for connection to the database

- "Database": Specify the database name.

Specify the following values as required:

- "SSLMode": Specify to encrypt communications. The default is "disable".
Refer to the SSLMode explanation in the table under step 5 of "3.2.2.1
Registering Using GUI" for information on how to configure SSLMode.

- 23 -

Definition
name

Setting value

 Note

When using Add-OdbcDsn, the strings "UID" and "Password" cannot be set as
option names. These can only be used when using ODBCConf.exe.

 Example

Add-OdbcDsn odbcps1 -DriverName "FUJITSU Enterprise Postgres Unicode 12" -DsnType System -

Platform 32-bit -SetPropertyValue @("Servername=sv1", "Port=27500", "Database=db01",

"SSLMode=verify-ca")

3.2.3 Registering ODBC Data Sources(for Linux)
This section describes how to register ODBC data sources on Linux.

1. Register the data sources

Edit the odbc.ini definition file for the data source.

 Information

Edit the file in the installation directory for the ODBC driver manager (unixODBC)

unixOdbcInstallDir/etc/odbc.ini

Or

Create a new file in the HOME directory

~/.odbc.ini

 Point

If unixOdbcInstallDir is edited, these will be used as the shared settings for all users that log into the system. If created
in the HOME directory (~/), the settings are used only by the single user.

Set the following content:

Definition name Setting value

[Data source
name]

Set the name for the ODBC data source.

Description Set a description for the ODBC data source. Any description may be set.

Driver Set the following as the name of the ODBC driver. Do not change this value.

Select the two strings below that correspond to the application type. Concatenate
the strings with no spaces and then specify this as the driver name.

 Note

The placeholders shown below are enclosed in angle brackets '<>' to avoid
confusion with literal text. Do not include the angle brackets in the string.

- 24 -

Definition name Setting value

- Application architecture

"FUJITSU Enterprise Postgres<fujitsuEnterprisePostgresClientVers>x64"

- Encoding system used by the application

- In Unicode (only UTF-8 can be used)

"unicode"

- Other than Unicode

"ansi"

Example: The encoding system used by the application is Unicode:

"FUJITSU Enterprise
Postgres<fujitsuEnterprisePostgresClientVers>x64unicode"

Database Specify the database name to be connected.

Servername Specify the host name for the database server.

Username Specify the user ID that will connect with the database.

Password Specify the password for the user that will connect to the database.

Port Specify the port number for the database server.

The default is "27500".

SSLMode Specify the communication encryption method. The setting values for SSLMode
are as follows:

- disable: Connect without SSL

- allow: Connect without SSL, and if it fails, connect using SSL

- prefer: Connect using SSL, and if it fails, connect without SSL

- require: Connect always using SSL

- verify-ca: Connect using SSL, and use a certificate issued by a trusted CA (*1)

- verify-full: Connect using SSL, and use a certificate issued by a trusted CA to
verify if the server host name matches the certificate (*1)

ReadOnly Specify whether to set the database as read-only.

- 1: Set read-only

- 0: Do not set read-only

*1: If specifying either "verify-ca" or "verify-full", use the environment variable PGSSLROOTCERT to specify the
CA certificate file as shown below.

Example

export PGSSLROOTCERT=cACertificateFileStorageDir/root.crt

 Example

[MyDataSource]

Description = FUJITSU Enterprise Postgres

Driver = FUJITSU Enterprise Postgres12x64ansi

Database = db01

Servername = sv1

- 25 -

Port = 27500

ReadOnly = 0

 Note

In consideration of security, specify the UserName and the Password by the application.

2. Configure the environment variable settings

To execute applications that use ODBC drivers, all of the following settings must be configured in the
LD_LIBRARY_PATH environment variable:

- fujitsuEnterprisePostgresClientInstallDir/lib

- unixOdbcInstallDir(*1)/lib

- libtoolInstallDir(*1)/lib

*1: If the installation directory is not specified when unixODBC and libtool are installed, they will be installed in /usr/
local.

3.2.4 Message Language and Encoding System Used by
Applications Settings

This section explains the language settings for the application runtime environment and the encoding settings for the
application.

Language settings

You must match the language settings for the application runtime environment with the message locale settings of the
database server.

Messages output by an application may include text from messages sent from the database server. In the resulting text, the
text of the application message will use the message locale of the application, and the text of the message sent by the database
server will use the message locale of the database server. If the message locales do not match, more than one language or
encoding system will be used. Moreover, if the encoding systems do not match, characters in the resulting text can be garbled.

- Linux

Set the locale for messages (LC_MESSAGES category) to match the message locale of the database server. This can be
done in a few different ways, such as using environment variables. Refer to the relevant manual of the operating system
for information on the setlocale function.

 Example

Example of specifying "en_US.UTF-8" with the setlocale function

setlocale(LC_ALL,"en_US.UTF-8");

Specifying the locale of the LC_ALL category propagates the setting to LC_MESSAGE.

- Windows(R)

Align the locale of the operating system with the message locale of the database server.

- 26 -

Encoding System Settings

Ensure that the encoding system that is embedded in the application and passed to the database, and the encoding system
setting of the runtime environment, are the same. The encoding system cannot be converted correctly on the database server.

Use one of the following methods to set the encoding system for the application:

- Set the PGCLIENTENCODING environment variable in the runtime environment.

- Set the client_encoding keyword in the connection string.

- Use the PQsetClientEncoding function.

 See

Refer to "Supported Character Sets" in "Server Administration" in the PostgreSQL Documentation for information on the
strings that represent the encoding system that can be set.

For example, when using "Unicode" and "8 bit", set the string "UTF8".

 Example

Setting the "PGCLIENTENCODING" environment variable

An example of setting when the encoding of the client is "UTF8" (Bash)

> PGCLIENTENCODING=UTF8; export PGCLIENTENCODING

An example of setting when the encoding of the client is "UTF8"

> set PGCLIENTENCODING=UTF8

 Note

Text may be garbled when outputting results to the command prompt. Review the font settings for the command prompt if
this occurs.

3.3 Connecting to the Database
Refer to the manual for the programming language corresponding to the ODBC interface, i.e. Access, Excel, or Visual Basic,
for example.

3.4 Application Development
This section describes how to develop applications using ODBC drivers.

3.4.1 Compiling Applications (for Windows (R))
Refer to the manual for the programming language corresponding to the ODBC interface, i.e. Access, Excel, or Visual Basic,
for example.

- 27 -

 Note

The cl command expects input to be a program that uses one of the following code pages, so convert the program to these code
pages and then compile and link it (refer to the Microsoft documentation for details).

- ANSI console code pages (example: UTF8)

- UTF-16 little-endian with or without BOM (Byte Order Mark)

- UTF-16 big-endian with or without BOM

- UTF-8 with BOM

The cl command converts strings in a program to an ANSI console code page before generating a module, so the data sent
to and received from the database server becomes an ANSI console code page. Therefore, set the coding system
corresponding to the ANSI console code page as the coding system of the client.

Refer to "Character Set Support" in "Server Administration" in the PostgreSQL Documentation for information on how to
set the client encoding system.

3.4.2 Compiling Applications (for Linux)
Specify the following options when compiling applications.

Table 3.1 Include file and library path

Architecture Option How to specify the option

64-bit Path of the include file -I unixOdbc64bitIncludeFileDir

Path of the library -L unixOdbc64bitLibraryDir

Table 3.2 ODBC library

Type of library Library name

Dynamic library libodbc.so

 Note

Specify -m64 when creating a 64-bit application.

 Example

The following are examples of compiling ODBC applications:

gcc -m64 -I/usr/local/include(*1) -L/usr/local/lib(*1) -lodbc testproc.c -o testproc

*1: This is an example of building and installing from the source without specifying an installation directory for unixODBC.
If you wish to specify a location, set the installation directory.

3.4.3 Creating Applications While in Database Multiplexing Mode
This section explains points to consider when creating applications while in database multiplexing mode.

 See

- Refer to the Cluster Operation Guide (Database Multiplexing) for information on database multiplexing mode.

- 28 -

- Refer to "Application Development" in the Cluster Operation Guide (PRIMECLUSTER) for points to consider when
creating applications using the failover feature integrated with the cluster software.

3.4.3.1 Errors when an Application Connection Switch Occurs and
Corresponding Actions

If an application connection switch occurs while in database multiplexing mode, explicitly close the connection and then
reestablish the connection or reexecute the application.

The table below shows errors that may occur during a switch, and the corresponding action to take.

State Error information (*1) Action

Server failure
or
FUJITSU Enterprise Postgres
system failure

Failure
occurs
during
access

57P01

08S01

After the switch is
complete, reestablish the
connection, or reexecute
the application.

Accessed
during
system
failure

08001

Switch to the standby server Switched
during
access

57P01

08S01

Accessed
during
switch

08001

*1: Return value of SQLSTATE.

- 29 -

Chapter 4 .NET Data Provider
This chapter describes how to configure for the purpose of creating .NET applications with Visual Studio.

4.1 Development Environment
.NET Data Provider can operate in the following environments:

.NET Framework environment for
the development and running of

applications

.NET Framework 4.8

.NET Framework 4.7/4.7.x

.NET Framework 4.6/4.6.x

.NET Framework 4.5.1 or later

Integrated development
environment for applications

running in a .NET Framework
environment

Visual Studio 2019
Visual Studio 2017
Visual Studio 2015

Combinations when TableAdapter is
used

Visual Studio 2019 .NET Framework 4.8
.NET Framework 4.7/4.7.x
.NET Framework 4.6/4.6.x
.NET Framework 4.5.1 or later

Visual Studio 2017 .NET Framework 4.8
.NET Framework 4.7/4.7.x
.NET Framework 4.6/4.6.x
.NET Framework 4.5.1 or later

Visual Studio 2015 .NET Framework 4.8
.NET Framework 4.7/4.7.x
.NET Framework 4.6/4.6.x
.NET Framework 4.5.1 or later

Available development languages C#
Visual Basic .NET

4.2 Setup
This section explains how to set up .NET Data Provider and Npgsql for Entity Framework.

4.2.1 Setting Up the Visual Studio Integration Add-On
A user with administrator privileges can register Npgsql Development Tools for .NET as an add-on installing the VSIX
package provided. Note that Visual Studio must already be installed in the system prior to installing the VSIX package.

Location of VSIX binaries

The Npgsql.vsix setup package is stored in the following location

fujitsuEnterprisePostgresClientInstallDir\DOTNET\Npgsql.vsix

Using Npgsql.vsix

Navigate to the Npgsql.vsix binary directory and double-click the package to install it.

> Npgsql.vsix

 See

Refer to "4.5.1 Uninstalling Npgsql" for details.

- 30 -

4.2.2 Setting Up .NET Data Provider
FUJITSU Enterprise Postgres has utilized Microsoft best practices of VSIX technology to integrate .NET Data Provider with
Visual Studio.

There is no need to explicitly add a reference to .NET Data Provider when using VSIX. This will be done automatically when
a database object is created and added to a project through the Visual Studio Server Explorer.

 Note

Additional setup is needed if using ProviderFactory to connect to a database in a multi-version installation. Refer to "2.4
Registering .NET Data Provider" in the Installation and Setup Guide for Client.

 Information

The following name will be displayed in [References] in Visual Studio Solution Explorer once a database object has been
created and added to the project. Note that the Npgsql reference is automatically added when the new database object is first
compiled.

- Npgsql

4.2.3 Setting Up .NET Data Provider Type Plugins
FUJITSU Enterprise Postgres .NET Data Provider now comes packaged with 6 Type Plugins that provide additional support
for more data type mappings (eg date time support via the Npgsql.NodaTime). The plugins modify how Npgsql maps the
PostgreSQL values to CLR types.

The type plugins are available for installation as a local NuGet packages. There are 6 pacakages available for installation.
"<x>" indicates the product version.

- Npgsql.NodaTime.<x>.0.0.nupkg

- Npgsql.Json.NET.<x>.0.0.nupkg

- Npgsql.NetTopologySuite.<x>.0.0.nupkg: Spatial type(*1)

- Npgsql.GeoJSON.<x>.0.0.nupkg: Spatial type(*1)

- Npgsql.LegacyPostgis.<x>.0.0.nupkg: Spatial type(*1)

- Npgsql.RawPostgis.<x>.0.0.nupkg: Spatial type(*1)

*1: Please note that the Spatial Type plugins require the PostGIS extension installed on the server.

Also, Refre to "Type Plugins" and "Additional Notes on each Type Plugin" on the each type plugins.

To install any of the plugins please follow the procedure below:

Location of NuGet package

The Plugin NuGet package are stored in the following location:

fujitsuEnterprisePostgresClientInstallDir\DOTNET\Npgsql.*.<x>.0.0.nupkg

Add a local package source

In Visual Studio, add a NuGet local package source if one does not exist.

1. Click [Tools] >> [Options] >> [NuGet Package Manager], and then select [Package Sources].

2. Click [+] in the upper-right corner, and then set [Name] to "Local Package Source".

3. Click […] and navigate to the folder above. Select this folder, and then click [OK].

- 31 -

Install the NuGet package

In Visual Studio, install the NuGet package from the local package source.

1. Click [Tools] >> [NuGet Package Manager] >> [Manage NuGet Packages for Solution].

2. In the upper-right corner, select "Local Package Source" from [Package Source].

3. Once the local package source is set, all available NuGet packages in this local location will be displayed. Select
the plugin to be installed (eg "Npgsql.NodaTime", and then select the projects for which this package is to be
installed.

4. Click [Install].

4.2.4 Setting Up Npgsql for Entity Framework
Npgsql for Entity Framework is supplied as a NuGet package file. To install it locally, follow the procedure below.

Location of NuGet package

The EntityFramework6.Npgsql NuGet package is stored in the following location:

fujitsuEnterprisePostgresClientInstallDir\DOTNET\EntityFramework6.npgsql.3.2.1.nupkg

Add a local package source

In Visual Studio, add a NuGet local package source if one does not exist.

1. Click [Tools] >> [Options] >> [NuGet Package Manager], and then select [Package Sources].

2. Click [+] in the upper-right corner, and then set [Name] to "Local Package Source".

3. Click […] and navigate to the folder above. Select this folder, and then click [OK].

Install the NuGet package

In Visual Studio, install the NuGet package from the local package source.

1. Click [Tools] >> [NuGet Package Manager] >> [Manage NuGet Packages for Solution].

2. In the upper-right corner, select "Local Package Source" from [Package Source].

3. Once the local package source is set, all available NuGet packages in this local location will be displayed. Select
"EntityFramework6.Npgsql", and then select the projects for which this package is to be installed.

4. Click [Install].

4.2.5 Message Language Settings
You must match the language settings for the application runtime environment with the message locale settings of the
database server.

Set language using the "System.Globalization.CultureInfo.CreateSpecificCulture" method.

 Example

Code example for changing the locale in a C# application

System.Threading.Thread.CurrentThread.CurrentUICulture =

 System.Globalization.CultureInfo.CreateSpecificCulture("en");

4.3 Connecting to the Database
This section explains how to connect to a database.

- Using NpgsqlConnection

- 32 -

- Using NpgsqlConnectionStringBuilder

- Using the ProviderFactory Class

4.3.1 Using NpgsqlConnection
Connect to the database by specifying the connection string.

 Example

Code examples for applications

using Npgsql;

NpgsqlConnection conn = new NpgsqlConnection("Server=sv1;Port=27500;Database=mydb;

Username=myuser;Password=myuser01; Timeout=20;CommandTimeout=20;");

Refer to "4.3.4 Connection String" for information on database connection strings.

4.3.2 Using NpgsqlConnectionStringBuilder
Generate connection strings by specifying the connection information in the properties of the
NpgsqlConnectionStringBuilder object.

 Example

Code examples for applications

using Npgsql;

NpgsqlConnectionStringBuilder sb = new NpgsqlConnectionStringBuilder();

sb.Host = "sv1";

sb.Port = 27500;

sb.Database = "mydb";

sb.Username = "myuser";

sb.Password = "myuser01";

sb.Timeout = 20;

sb.CommandTimeout = 20;

NpgsqlConnection conn = new NpgsqlConnection(sb.ConnectionString);

Refer to "4.3.4 Connection String" for information on database connection strings.

4.3.3 Using the ProviderFactory Class
Obtain the DbConnection object from the provider factory.

 Example

Code examples for applications

using System.Data.Common;

DbProviderFactory factory = DbProviderFactories.GetFactory("FUJITSU.Npgsql");

DbConnection conn = factory.CreateConnection();

conn.ConnectionString = "Server=sv1;Port=27500;Database=mydb;

Username=myuser;Password=myuser01; Timeout=20;CommandTimeout=20;";

- 33 -

Refer to "4.3.4 Connection String" for information on database connection strings.

4.3.4 Connection String
Specify the following connection information to connect to the database.

Server=127.0.0.1;Port=27500;Database=mydb;Username=myuser;Password=myuser01;...;

 (1) (2) (3) (4) (5) (6)

(1) Specify the host name or IP address of the server to be connected. This must be specified.

(2) Specify the port number for the database server. The default is "27500".

(3) Specify the database name to be connected.

(4) Specify the username that will connect with the database.

(5) Specify the password for the user that will connect to the database.

(6) Refer to the following for information on how to specify other connection information.

The table below shows keywords that are available to specify in the connection string in .NET Data Provider (Npgsql):

Note that some settings require care if using an Oracle database-compatible feature (refer to "9.2.2 Notes when Integrating
with the Interface for Application Development" for details).

Keyword Default

value
Description

Host None Specify the host name or IP address of the server to be connected.

Specify up to 63 bytes when specifying a host name.

A host name or IP address must be specified.

Port 27500 Specify the port number for the database server.

Username None Specify the username that will connect with the database. Not required
if using Integrated Security.

Password None Specify the password for the username that will connect to the
database. Not required if using Integrated Security.

Database Username Specify the database name to be connected.

Search Path Specify the default schema name of the SQL statements used in the
application.

Timeout 15 Specify the timeout for connections.

Specify a value between 0 and 1024 (in seconds). The default is 15
seconds. An error occurs when a connection cannot be established
within the specified time.

Connection Idle
Lifetime

300 Specify the time to wait before closing idle connections in the pool if
the count of all connections exceeds Minimum Pool Size.

Pooling true Specify whether to use connection pooling.

- Connection pooling is used if you specify true.

- Connection pooling is not used if you specify false.

Maximum Pool Size 100 Maximum size of a connection pool. If the request exceeds this limit,
it will wait until another connection closes and the pool is available.

Specify in the range between 0 and 1024.

- 34 -

Keyword Default
value

Description

Minimum Pool Size 1 Minimum size of a connection pool. When you specify Minimum
Pool Size, NpgsqlConnection will pre-allocate connections with the
specified number of servers.

Specify in the range from 0 to the value specified at Maximum Pool
Size.

SSL Mode Disable Specify one of the following values for the SSL connection control
mode:

- Prefer: SSL is used for connection wherever possible.

- Require: An exception is thrown when SSL connection is not
possible.

- Disable: SSL connection is not performed.

Enlist true Specify whether to have connections participate in transactions with
the transaction scope declared:

- Connections will participate in transactions when true is
specified.

- Connections will not participate in transactions when false is
specified.

Command Timeout 30 Specify the timeout for communication with the server.

Specify a value between 0 and 2147483647 (in seconds). There is no
limit set if you set 0. An error occurs when data is not received from
the server within the specified time.

Integrated Security false Set this when using Windows Integrated Security.

Trust Server
Certificate

false Whether to trust the server certificate without validating it.

Use SSL Stream false Npgsql uses its own internal implementation of TLS/SSL. Turn this
on to use .NET SslStream instead.

Check Certificate
Revocation

false Whether to check the certificate revocation list during authentication.

Persist Security Info false Gets or sets a Boolean value that indicates if security-sensitive
information, such as the password, is not returned as part of the
connection if the connection is open or has ever been in an open state.

Kerberos Service
Name

postgres The Kerberos service name to be used for authentication.

Include Realm The Kerberos realm to be used for authentication.

Connection Pruning
Interval

10 How many seconds the pool waits before attempting to prune idle
connections that are beyond idle lifetime

Internal Command
Timeout

-1 The time to wait (in seconds) while trying to execute an internal
command before terminating the attempt and generating an error. -1
uses Command Timeout, 0 means no timeout.

Keepalive disabled The number of seconds of connection inactivity before Npgsql sends
a keepalive query.

Tcp Keepalive Time disabled The number of milliseconds of connection inactivity before a TCP
keepalive query is sent. Use of this option is discouraged, use
Keepalive instead if possible. Supported only on Windows.

- 35 -

Keyword Default
value

Description

Tcp Keepalive
Interval

Tcp
Keepalive
Time

The interval, in milliseconds, between when successive keep-alive
packets are sent if no acknowledgement is received. Tcp Keepalive
Time must be non-zero as well. Supported only on Windows.

Application Name Optional application name parameter to be sent to the backend during
connection initiation.

Client Encoding Sets the client_encoding parameter.

EF Template
Database

template1 The database template to specify when creating a database in Entity
Framework.

Max Auto Prepare 0 The maximum number of SQL statements that can be automatically
prepared at any given point. Beyond this number the least-recently-
used statement will be recycled. Zero disables automatic preparation.

Auto Prepare Min
Usages

5 The minimum number of usages an SQL statement is used before it is
automatically prepared.

Use Perf Counters false Makes Npgsql write performance information about connection use to
Windows Performance Counters. Supported only on Windows.

Using performance counters first involves setting them up on your
Windows system. To do this you will need to install Npgsql's MSI and
ensure that the Performance Counters option is installed.

In addition, you will need to pass "Use Perf Counters=true" on your
connection string. Once you start your Npgsql application with this
addition, you should start seeing real-time data in the Performance
Monitor.

Read Buffer Size 8192 Size of the internal buffer Npgsql uses when reading. Increasing may
improve performance if transferring large values from the database.

Write Buffer Size 8192 Size of the internal buffer Npgsql uses when writing. Increasing may
improve performance if transferring large values to the database.

Socket Receive
Buffer Size

System
dependent

Size of socket receive buffer.

Socket Send Buffer
Size

System
dependent

Size of socket send buffer.

4.4 Application Development
This section explains the range of support provided with Visual Studio integration.

4.4.1 Data Types
A variety of data types can be used with FUJITSU Enterprise Postgres.

The data types below are supported whether you automatically generate applications using tools in Visual Studio (Query
Builder in TableAdapter and Server Explorer), or create applications yourself (with DataProvider).

Table 4.1 List of supported data types

Data Types

Supported

Operation in the
Visual Studio

integration
window

Fujitsu Npgsql .NET
Data Provider

character Y Y

- 36 -

Data Types

Supported

Operation in the
Visual Studio

integration
window

Fujitsu Npgsql .NET
Data Provider

character varying Y Y

national character Y Y

national character varying Y Y

text Y Y

bytea N N

smallint Y Y

integer Y Y

bigint Y Y

smallserial N N

serial N N

bigserial N N

real Y Y

double precision Y Y

numeric Y Y

decimal Y Y

money N Y

date Y Y

time with time zone Conditional (*1) Conditional (*1)

time without time zone Conditional (*1) Conditional (*1)

timestamp without time zone Y Y

timestamp with time zone Y Y

interval Conditional (*2) Conditional (*2)

boolean Y Y

bit N N

bit varying N N

uuid Y Y

inet N Conditional (*3)

macaddr N Y

macaddr8 N Y

cidr N Conditional (*4)

Geometric data type (point,lseg,box,path,polygon,circle) N Y

array N Y

oid N N

xml N Y

json N N

Types related to text searches(tsvector,tsquery) N N

- 37 -

Data Types

Supported

Operation in the
Visual Studio

integration
window

Fujitsu Npgsql .NET
Data Provider

Enumerated type N N

Composite type N N

Range type N N

Y: Supported

N: Not supported

*1: As shown below, "time with time zone" and "time without time zone" values display the date portion as additional
information. However, the actual data comprises the time data only, so with the exception of this displayed format, there are
no other resulting issues.

Example:

Composition of table (t1)

col1 (time with time zone) col2 (time without time zone)

1/01/0001 10:21:30 +08:00 10:21:30

1/01/0001 23:34:03 +08:00 23:34:03

1/01/0001 17:23:54 +08:00 17:23:54

"time with time zone" values display a fixed value of “2/01/0001” in the date portion, while "time without time zone" values
display just the time data.

SELECT *

 FROM t1;

 col1 | col2

----------------------------+---------------------

 1/01/0001 10:21:30 +08:00 | 10:21:30

 1/01/0001 23:34:03 +08:00 | 23:34:03

 1/01/0001 17:23:54 +08:00 | 17:23:54

*2: The format is d.hh:mm:ss, where d is an integer and hh:mm:ss is a maximum of 23.59.59 (23 hours, 59 minutes, and 59
seconds).

*3: When updating inet types, only a single host is supported. The input format is addr/y where addr is an IPv4 or IPv6 address
and y is the number of bits in the netmask. If /y is omitted, the number of bits in the netmask is set to 32 for an IPv4 address
and 128 for an IPv6 address. On display, the /y portion is suppressed.

*4: When updating cidr types, only a single host is supported.

4.4.2 Relationship between Application Data Types and Database
Data Types

The data types available for SQL data types are as follows:

DbType NpgsqlDbType PostgreSQL type Accepted C# types .Net Framework

Type

Char char string, char[], char,
IConvertible

System.String,
System.Char[],
System.Char

- 38 -

DbType NpgsqlDbType PostgreSQL type Accepted C# types .Net Framework
Type

Varchar varchar string, char[], char,
IConvertible

System.String,
System.Char[],
System.Char

String,
StringFixedLength,
AnsiString,
AnsiStringFixedLe
ngth

Text text string, char[], char,
IConvertible

System.String,
System.Char[],
System.Char

Binary Bytea bytea byte[], ArraySegment System.Byte[]

Int16 Smallint int2 short, IConvertible System.Int16

Int32 Integer int4 int, IConvertible System.Int32

Int64 Bigint int8 long, IConvertible System.Int64

Single Real float4 float, IConvertible System.Single

Double Double float8 double, IConvertible System.Double

Decimal,
VarNumeric

Numeric numeric decimal, IConvertible System.Decimal

Date Date date DateTime,
NpgsqlDate,
IConvertible

System.DateTime

TimeTZ timetz DateTimeOffset,
DateTime, TimeSpan

System.DateTimeOffs
et, System.DateTime,
System.TimeSpan

Time Time time TimeSpan, string System.Timespan

DateTime,
DateTime2

Timestamp timestamp DateTime,
DateTimeOffset,
NpgsqlDateTime,
IConvertible

System.DateTime

DateTimeOffset TimestampTZ timestamptz DateTime,
DateTimeOffset,
NpgsqlDateTime,
IConvertible

System.DateTime

Interval interval TimeSpan,
NpgsqlTimeSpan,
string

System.TimeSpan

Boolean bool bool, IConvertible System.Boolean

Bit bit BitArray, bool, string System.Boolean,
System.String

Uuid uuid Guid, string System.Guid

Inet inet IPAddress, NpgsqlInet ValueTuple<IPAddres
s, int>, IPAddress,
NpgsqlInet

MacAddr macaddr PhysicalAddress System.Net.NetworkI
nformation.PhysicalA
ddress

- 39 -

DbType NpgsqlDbType PostgreSQL type Accepted C# types .Net Framework
Type

MacAddr8 macaddr8 PhysicalAddress System.Net.NetworkI
nformation.PhysicalA
ddress

Box box NpgsqlBox NpgsqlBox

Circle circle NpgsqlCircle NpgsqlCircle

LSeg lseg NpgsqlLSeg NpgsqlLSeg

Path path NpgsqlPath NpgsqlPath

Point point NpgsqlPoint NpgsqlPoint

Polygon polygon NpgsqlPolygon NpgsqlPolygon

Array array types Array, IList, IList System.Array

4.4.3 Creating Applications while in Database Multiplexing Mode
This section explains points to consider when creating applications while in database multiplexing mode.

 See

- Refer to the Cluster Operation Guide (Database Multiplexing) for information on database multiplexing mode.

- Refer to "Application Development" in the Cluster Operation Guide (PRIMECLUSTER) for points to consider when
creating applications using the failover feature integrated with the cluster software.

4.4.3.1 Errors when an Application Connection Switch Occurs and
Corresponding Actions

If an application connection switch occurs while in database multiplexing mode, explicitly close the connection and then
reestablish the connection or reexecute the application.

The table below shows errors that may occur during a switch, and the corresponding action to take.

State Error information Action

Server failure
or
FUJITSU Enterprise Postgres
system failure

Failure occurs
during access

57P01 (*1)

Empty string (*1)

After the switch is
complete, reestablish the
connection, or reexecute
the application.Accessed during

system failure
Empty string (*1)

Switch to the standby server Switched during
access

57P01 (*1)

Empty string (*1)

Accessed during
switch

Empty string (*1)

*1: This is the return value of the PostgresException attribute SqlState.

4.4.4 Notes

- 40 -

Notes on TableAdapter

- If [SELECT which returns a single value] is selected when adding a query to a TableAdapter, it will not be possible to
execute the SQL statement displayed on the window - therefore, correct the SQL statement.

Type Plugins

- These type libraries include:

- NodaTime - the recommended way to interact with PostgrSQL date/time types

- Json.NET - allows Npgsql to use the NewtonSoft Json.NET library when reading and writing JSON data (both json
and jsonb)

- NetTopologySuite - allows Npgsql to map PostGIS spatial types directly to the NetTopology suite types (the leading
spatial library in .NET)

- GeoJSON - allows Npgsql to read and write PostGIS spatial types as GeoJSON types via the GeoJSON.NET library

- LegacyPostgis - implements the previously supported PostGIS spatial types as a plugin and is limited to geometry
and XY only. Gerography and XYZ, XYM and XYZM is not supported in this plugin and if required, use the
NetTopologySuite plugin

- RawPostgis - allows raw byte access to PostGIS types

- Setup the plugin in your application simply by adding a dependency on the plugin (this should have been done
automatically when installed to the project) and set it up. See the following code snippet for an example of setting up the
Npgsql.NodaTime plugin:

 using Npgsql;

 // Place this at the beginning of your program to use NodaTime everywhere

(recommended)

 NpgsqlConnection.GlobalTypeMapper.UseNodaTime();

 // Or to temporarily use NodaTime on a single connection only:

 conn.TypeMapper.UseNodaTime();

Once the plugin is setup, you can read and write NodaTime objects as per the code snippet below:

 // Write NodaTime Instant to PostgreSQL "timestamp without time zone"

 using (var cmd = new NpgsqlCommand(@"INSERT INTO mytable (my_timestamp) VALUES

(@p)", conn))

 {

 cmd.Parameters.Add(new NpgsqlParameter("p", Instant.FromUtc(2011, 1, 1, 10,

30)));

 cmd.ExecuteNonQuery();

 }

 // Read timestamp back from the database as an Instant

 using (var cmd = new NpgsqlCommand(@"SELECT my_timestamp FROM mytable", conn))

 using (var reader = cmd.ExecuteReader())

 {

 reader.Read();

 var instant = reader.GetFieldValue<Instant>(0);

 }

- To apply the type plugin updates, do one of the following:

- After uninstalling the type plugin (Refer to "4.5.2 Uninstalling .NET Data Provider Type Plugins"), setup the type
plugin (Refer to "4.2.3 Setting Up .NET Data Provider Type Plugins").

- Remove the type plugin directory from the packages directory of the solution, and then restore it using the nuget
restore command.

- When you deploy an application with a type plugin, the type plugin is included in the distribution. Therefore, after
applying the type plugin updates, you must rebuild the application and deploy the updated application.

- 41 -

Additional Notes on each Type Plugin

Describe notes about each type plugin.

NodaTime

Mapping Table

Describes the mapping of PostgreSQL data types to NodaTime data types.

PostgreSQL

Type
Default

NodaTime Type
Additional

NodaTime Type
Note

timestamp Instant LocalDateTime It's common to store UTC timestamps in
databases - you can simply do so and read/
write Instant values. You also have the
option of readin/writing LocalDateTime,
which is a date/time with no information
about timezones; this makes sense if you're
storing the timezone in a different column
and want to read both into a NodaTime
ZonedDateTime

timestamp with
time zone

Instant ZonedDateTime,
OffsetDateTime

This PostgreSQL type stores only a
timestamp, assumed to be in UTC. If you
read/write this as an Instant, it will be
provided as stored with no timezone
conversions whatsoever. If, however, you
read/write as a ZonedDateTime or
OffsetDateTime, the plugin will
automatically convert to and from UTC
according to your PostgreSQL session's
timezone.

date LocalDate A simple date with no timezone or offset
information.

time LocalTime A simple time-of-day, with no timezone or
offset information.

time with time
zone

OffsetTime This is a PostgreSQL type that stores a time
and an offset.

interval Period This is a human interval which does not have
a fixed absolute length ("two months" can
vary depending on the months in question),
and so it is mapped to NodaTime's Period
(and not Duration or TimeSpan).

Json.NET

Once the JSON plugin has been setup, users can transparently read and write CLR objects as JSON values and the plugin
will automatically serialize/deserialize them

See the code snippet below:

// Write arbitrary CLR types as JSON

using (var cmd = new NpgsqlCommand(@"INSERT INTO mytable (my_json_column) VALUES (@p)",

conn))

{

 cmd.Parameters.Add(new NpgsqlParameter("p", NpgsqlDbType.Jsonb) { Value =

MyClrType });

 cmd.ExecuteNonQuery();

}

- 42 -

// Read arbitrary CLR types as JSON

using (var cmd = new NpgsqlCommand(@"SELECT my_json_column FROM mytable", conn))

using (var reader = cmd.ExecuteReader())

{

 reader.Read();

 var someValue = reader.GetFieldValue<MyClrType>(0);

}

NetTopologySuite (spatial)

By default the plugin handles only ordinates provided by the DefaultCoordinateSequenceFactory of
GeometryServiceProvider.Instance. If GeometryServiceProvider is initialized automatically the X and Y ordinates are
handled. To change the behavior specify the handleOrdinates parameter like in the following example:

conn.TypeMapper.UseNetTopologySuite(handleOrdinates: Ordinates.XYZ);

To process the M ordinate, you must initialize GeometryServiceProvider.Instance to a new NtsGeometryServices
instance with coordinateSequenceFactory set to a DotSpatialAffineCoordinateSequenceFactory. Or you can specify the
factory when calling UseNetTopologySuite.

// Place this at the beginning of your program to use the specified settings everywhere

(recommended)

GeometryServiceProvider.Instance = new NtsGeometryServices(

 new DotSpatialAffineCoordinateSequenceFactory(Ordinates.XYM),

 new PrecisionModel(PrecisionModels.Floating),

 -1);

// Or specify settings for Npgsql only

conn.TypeMapper.UseNetTopologySuite(

 new DotSpatialAffineCoordinateSequenceFactory(Ordinates.XYM));

Reading and Writing Geometry Values

When reading PostGIS values from the database, Npgsql will automatically return the appropriate NetTopologySuite
types: Point, LineString, and so on. Npgsql will also automatically recognize NetTopologySuite's types in parameters,
and will automatically send the corresponding PostGIS type to the database. The following code demonstrates a
roundtrip of a NetTopologySuite Point to the database:

var point = new Point(new Coordinate(1d, 1d));

conn.ExecuteNonQuery("CREATE TEMP TABLE data (geom GEOMETRY)");

using (var cmd = new NpgsqlCommand("INSERT INTO data (geom) VALUES (@p)", conn))

{

 cmd.Parameters.AddWithValue("@p", point);

 cmd.ExecuteNonQuery();

}

using (var cmd = new NpgsqlCommand("SELECT geom FROM data", conn))

using (var reader = cmd.ExecuteReader())

{

 reader.Read();

 Assert.That(reader[0], Is.EqualTo(point));

}

You may also explicitly specify a parameter's type by setting NpgsqlDbType.Geometry.

Geography (geodetic) Support

PostGIS has two types:geometry (for Cartesian coordinates) and geography (for geodetic or spherical coordinates).
You can read about the geometry/geography distinction in the PostGIS docs. In a nutshell, geography is much more

- 43 -

accurate when doing calculations over long distances, but is more expensive computationally and supports only a
small subset of the spatial operations supported by geometry.

Npgsql uses the same NetTopologySuite types to represent both geometry and geography - the Point type represents
a point in either Cartesian or geodetic space. You usually don't need to worry about this distinction because
PostgreSQL will usually cast types back and forth as needed. However, it's worth noting that Npgsql sends Cartesian
geometry by default, because that's the usual requirement. You have the option of telling Npgsql to send geography
instead by specifying NpgsqlDbType.Geography:

using (var cmd = new NpgsqlCommand("INSERT INTO data (geog) VALUES (@p)", conn))

{

 cmd.Parameters.AddWithValue("@p", NpgsqlDbType.Geography, point);

 cmd.ExecuteNonQuery();

}

If you prefer to use geography everywhere by default, you can also specify that when setting up the plugin:

NpgsqlConnection.GlobalTypeMapper.UseNetTopologySuite(geographyAsDefault: true);

GeoJSON (spatial)

Using the GeoJSON plugin is the same as the NetTopologuSuite.

LegacyPostgis (spatial)

If you've used the internal PostGIS types in Npgsql 3.2 or earlier, the plugin works in the same way:

NpgsqlConnection.GlobalTypeMapper.UseLegacyPostgis();

// Write

var cmd = new NpgsqlCommand("INSERT INTO table (pg_point, pg_polygon) VALUES (@point,

@polygon)", conn);

cmd.Parameters.AddWithValue("point", new PostgisPoint(3.5, 4.5));

cmd.ExecuteNonQuery();

// Read

var cmd = new NpgsqlCommand("SELECT * FROM table", conn);

var reader = cmd.ExecuteReader();

while (reader.Read()) {

 var point = reader.GetFieldValue<PostgisPoint>(0);

 var polygon = reader.GetFieldValue<PostgisPolygon>(1);

}

Notes on the Query Builder

- Prefix named parameters with "@".

- Uppercase object names cannot be used, even when enclosed in double quotation marks.
To use uppercase object names enclosed in double quotation marks, include them in SQL statements and enter these in
the [Generate the SQL statements] window rather than in the Query Builder.

- SQL statements cannot be correctly generated if the SQL statement specified in Filter matches any of the conditions
below:

- It uses PostgreSQL intrinsic operators such as << or ::.

- It uses functions with keywords such as AS, FROM, IN, OVER.

Example: extract(field from timestamp), RANK() OVER

- It uses functions with the same names as those prescribed in SQL conventions, but that require different arguments.

- 44 -

Notes on Server Explorer

- The temporary table is not displayed.

Notes on metadata

- The CommandBehavior.KeyInfo argument must be specified if executing ExecuteReader before obtaining metadata
using GetSchemaTable.

 Example

NpgsqlDataReader ndr=cmd.ExecuteReader(CommandBehavior.KeyInfo);

DataTable dt = dr.GetSchemaTable();

Notes on automatically generating update-type SQL statements

- If the SQL statement includes a query (which cannot be updated) that matches any of the conditions below, an update-
type SQL statement will be generated (note that it may not be possible to execute this SQL statement in some cases):

- It includes derived tables

- It includes the same column name as the select list

Update-type SQL statements will be automatically generated in the following cases:

- If update statements are obtained using NpgsqlCommandBuilder

- If data is updated using NpgsqlDataAdapter

- If data is updated using TableAdapter

Notes on distributed transactions

- Applications using transaction scope can use distributed transactions by linking with Microsoft Distributed Transaction
Coordinator (MSDTC). In this case, note the following:

- Ensure that the value of max_prepared_transactions is greater than max_connection, so that "PREPARE
TRANSACTION" can be issued for each transaction that simultaneously connects to the database server.

- If each transaction in the transaction scope accesses the same resource using different connections, the database
server will perceive it as requests from different applications, and a deadlock may occur. By configuring a timeout
value for the transaction scope beforehand, the deadlock can be broken.

4.5 Uninstallation
This section explains how to uninstall Npgsql and Npgsql for Entity Framework.

4.5.1 Uninstalling Npgsql
To uninstall Npgsql, uninstall each of its components separately:

1. Uninstall DDEX.

DDEX provides the Visual Studio integration tools within the IDE through the Npgsql.VSIX package installation.

1. Open Visual Studio 2015.

2. Click [Tools], and then [Extensions and Updates].

3. Select the FUJITSU Npgsql PostgreSQL Integration extension, and then click [Uninstall].

- 45 -

4. In the confirmation dialog box "Are you sure you want to schedule FUJITSU Npgsql PostgreSQL Integration
for uninstall?", click [Yes].

Note that the status at the bottom of the [Extensions and Updates] window will change to "Your changes will be
scheduled. The modifications will begin when all Microsoft Visual Studio windows are closed".

5. Click [Close].

6. Close all Visual Studio instances currently open.

The VSIX Installer will automatically start.

7. Click [Modify] to continue with uninstallation of FUJITSU Npgsql PostgreSQL Integration.

8. Upon completion, a dialog box will be displayed - click [Close].

2. Uninstall Npgsql GAC.

Npgsql.dll provides DBProviderFactory functionality for Npgsql.

1. Click [Control Panel], and then [Programs and Features].

2. Right-click the target program below in the list, and click [Uninstall]. (The notation "x.y.z" indicates the version
of the FUJITSU Enterprise Postgres.)
Name: Fujitsu Npgsql .NET Data Provider GAC Register For .NET 4.5
Issuing company: FUJITSU LIMITED
Version: x.y.z

3. In the confirmation dialog box "Are you sure you want to uninstall Fujitsu Npgsql .NET Data Provider GAC
Register For .NET 4.5?", click [Yes].

4. Upon completion, the uninstall window will close, and the uninstallation target version of Fujitsu Npgsql .NET
Data Provider GAC Register For .NET 4.5 will no longer be listed.

4.5.2 Uninstalling .NET Data Provider Type Plugins
The .NET Data Provider type plugins are installed per project. To uninstall it, follow the procedure below:

1. In Visual Studio, open a project for which Npgsql the Plugin to be removed is installed.

2. Click [Tools] >> [NuGet Package Manager] >> [Manage NuGet Packages for Solution].

3. Select all the projects that have Npgsql Plugin(s) installed, and then click [Uninstall].
Alternatively, if the plugin packages have been removed and are no longer installed, in the solution explorer open the
Dependencies/NuGet node and delete the plugins that require uninstallation.

4.5.3 Uninstalling Npgsql for Entity Framework
Npgsql for Entity Framework is installed per project. To uninstall it, follow the procedure below:

1. In Visual Studio, open a project for which Npgsql for Entity Framework is installed.

2. Click [Tools] >> [NuGet Package Manager] >> [Manage NuGet Packages for Solution].

3. Select all the projects that have Npgsql for Entity Framework installed, and then click [Uninstall].
Alternatively, if the Entity Framework package has been removed and is no longer installed, in the solution explorer
open the Dependencies/NuGet node and delete the Entity Framework package

- 46 -

Chapter 5 C Library (libpq)
This chapter describes how to use C libraries.

5.1 Development Environment
Install FUJITSU Enterprise Postgres Client Package for the architecture to be developed and executed.

 See

Refer to Installation and Setup Guide for Client for information on the C compiler required for C application development.

5.2 Setup
This section describes the environment settings required to use C libraries and how to encrypt data for communication.

5.2.1 Environment Settings
To execute an application that uses libpq, set the environment variable as shown below.

Linux

- Required for compile/link

- LD_LIBRARY_PATH
fujitsuEnterprisePostgresClientInstallDir/lib

- Required for execution of the application

- PGLOCALEDIR
fujitsuEnterprisePostgresClientInstallDir/share/locale

 Example

"<x>" indicates the product version.

> LD_LIBRARY_PATH=/opt/fsepv<x>client64/lib:$LD_LIBRARY_PATH;export LD_LIBRARY_PATH

> PGLOCALEDIR=/opt/fsepv<x>client64/share/locale;export PGLOCALEDIR

Windows (R)

- Required for compile/link

- LIB
fujitsuEnterprisePostgresClientInstallDir\lib

- INCLUDE
fujitsuEnterprisePostgresClientInstallDir\include

- Required for execution of the application

- PATH
fujitsuEnterprisePostgresClientInstallDir\lib

- PGLOCALEDIR
fujitsuEnterprisePostgresClientInstallDir\share\locale

- 47 -

 Example

When the 32-bit version client package is installed on a 64-bit operating system. "<x>" indicates the product version.

> SET PATH=%ProgramFiles(x86)%\Fujitsu\fsepv<x>client32\lib;%PATH%

> SET LIB=%ProgramFiles(x86)%\Fujitsu\fsepv<x>client32\lib;%LIB%

> SET INCLUDE=%ProgramFiles(x86)%\Fujitsu\fsepv<x>client32\include;%INCLUDE%

> SET PGLOCALEDIR=%ProgramFiles(x86)%\Fujitsu\fsepv<x>client32\share\locale

5.2.2 Message Language and Encoding System Used by
Applications Settings

This section explains the language settings for the application runtime environment and the encoding settings for the
application.

Language settings

You must match the language settings for the application runtime environment with the message locale settings of the
database server.

Messages output by an application may include text from messages sent from the database server. In the resulting text, the
text of the application message will use the message locale of the application, and the text of the message sent by the database
server will use the message locale of the database server. If the message locales do not match, more than one language or
encoding system will be used. Moreover, if the encoding systems do not match, characters in the resulting text can be garbled.

- Linux

Set the locale for messages (LC_MESSAGES category) to match the message locale of the database server. This can be
done in a few different ways, such as using environment variables. Refer to the relevant manual of the operating system
for information on the setlocale function.

 Example

Example of specifying "en_US.UTF-8" with the setlocale function

setlocale(LC_ALL,"en_US.UTF-8");

Specifying the locale of the LC_ALL category propagates the setting to LC_MESSAGE.

- Windows(R)

Align the locale of the operating system with the message locale of the database server.

Encoding System Settings

Ensure that the encoding system that is embedded in the application and passed to the database, and the encoding system
setting of the runtime environment, are the same. The encoding system cannot be converted correctly on the database server.

Use one of the following methods to set the encoding system for the application:

- Set the PGCLIENTENCODING environment variable in the runtime environment.

- Set the client_encoding keyword in the connection string.

- Use the PQsetClientEncoding function.

- 48 -

 See

Refer to "Supported Character Sets" in "Server Administration" in the PostgreSQL Documentation for information on the
strings that represent the encoding system that can be set.

For example, when using "Unicode" and "8 bit", set the string "UTF8".

 Note

Text may be garbled when outputting results to the command prompt. Review the font settings for the command prompt if
this occurs.

5.2.3 Settings for Encrypting Communication Data
Set in one of the following ways when performing remote access using communication data encryption:

When setting from outside with environment variables

Specify "require", "verify-ca", or "verify-full" in the PGSSLMODE environment variable.

In addition, the parameters for the PGSSLROOTCERT and PGSSLCRL environment variables need to be set to prevent
spoofing of the database server.

 See

Refer to "Environment Variables" in "Client Interfaces" in the PostgreSQL Documentation for information on
environment variables.

When specifying in the connection URI

Specify "require", "verify-ca", or "verify-full" in the "sslmode" parameter of the connection URI.

In addition, the parameters for the sslcert, sslkey, sslrootcert, and sslcrl need to be set to prevent spoofing of the database
server.

 See

Refer to "Secure TCP/IP Connections with SSL" in "Server Administration" in the PostgreSQL Documentation for
information on encrypting communication data.

5.3 Connecting with the Database

 Point

Use the connection service file to specify the connection destination. In the connection service file, a name (service name)
is defined as a set, comprising information such as connection destination information and various types of tuning
information set for connections. By using the service name defined in the connection service file when connecting to
databases, it is no longer necessary to modify applications when the connection information changes.

Refer to "Client Interfaces", "The Connection Service File" in the PostgreSQL Documentation for details.

 See

Refer to "Database Connection Control Functions" in "Client Interfaces" in the PostgreSQL Documentation.

- 49 -

In addition, refer to "6.3 Connecting with the Database" in "Embedded SQL in C " for information on connection string.

5.4 Application Development

 See

Refer to "libpq - C Library" in "Client Interfaces" in the PostgreSQL Documentation for information on developing
applications.

However, if you are using the C library, there are the following differences to the PostgreSQL C library (libpq).

5.4.1 Compiling Applications
Specify the following paths when compiling applications.

Refer to your compiler documentation for information on how to specify the path.

- Linux

Table 5.1 Include file and library path

Type of path Path name

Path of the include file fujitsuEnterprisePostgresClientInstallDir/include

Path of the library fujitsuEnterprisePostgresClientInstallDir/lib

Table 5.2 C Library (libpq library)

Type of library Library name

Dynamic library libpq.so

Static library libpq.a

- Windows(R)

If the include file and the library path have been set in the environment variable, there is no need to specify the paths
shown below for the compile.

Table 5.3 Include file and library path

Type of path Path name

Path of the include
file

fujitsuEnterprisePostgresClientInstallDir\include

Path of the library fujitsuEnterprisePostgresClientInstallDir\lib

Table 5.4 C Library (libpq library)

Type of library Library name

Library for links libpq.lib

Dynamic library libpq.dll

5.4.2 Creating Applications while in Database Multiplexing Mode
This section explains points to consider when creating applications while in database multiplexing mode.

 See

- Refer to the Cluster Operation Guide (Database Multiplexing) for information on database multiplexing mode.

- 50 -

- Refer to "Application Development" in the Cluster Operation Guide (PRIMECLUSTER) for points to consider when
creating applications using the failover feature integrated with the cluster software.

5.4.2.1 Errors when an Application Connection Switch Occurs and
Corresponding Actions

If an application connection switch occurs while in database multiplexing mode, explicitly close the connection and then
reestablish the connection or reexecute the application.

The table below shows errors that may occur during a switch, and the corresponding action to take.

State Error information Action

Server failure
or
FUJITSU Enterprise Postgres
system failure

Failure occurs
during access

PGRES_FATAL_ERRO
R(*1)

57P01(*2)

NULL(*2)

After the switch is
complete,
reestablish the
connection, or
reexecute the
application.Accessed

during system
failure

CONNECTION_BAD(*
3)

Switch to the standby server Switched
during access

PGRES_FATAL_ERRO
R(*1)

57P01(*2)

NULL(*2)

Accessed
during switch

CONNECTION_BAD(*
3)

*1: Return value of PQresultStatus().

*2: Return value of PQresultErrorField() PG_DIAG_SQLSTATE.

*3: Return value of PQstatus().

- 51 -

Chapter 6 Embedded SQL in C
This chapter describes application development using embedded SQL in C.

6.1 Development Environment
Install FUJITSU Enterprise Postgres Client Package for the architecture to be developed and executed.

 See

Refer to Installation and Setup Guide for Client for information on the C compiler required for C application development.

 Note

C++ is not supported. Create a library by implementing embedded SQL in C, and call it from C++.

6.2 Setup

6.2.1 Environment Settings
When using embedded SQL in C, the same environment settings as when using the C library (libpq) are required.

Refer to "5.2.1 Environment Settings" in "C Library (libpq)" for information on the environment settings for the library for
C.

Additionally, set the following path for the precompiler ecpg in the PATH environment variable:

Linux

fujitsuEnterprisePostgresClientInstallDir/bin

Windows(R)

fujitsuEnterprisePostgresClientInstallDir\bin

6.2.2 Message Language and Encoding System Used by
Applications Settings

The message language and the encoding System Settings Used by Applications settings are the same as when using the library
for C.

However, in embedded SQL, the PQsetClientEncoding function cannot be used in the encoding system settings. In embedded
SQL, use the SET command to specify the encoding system in client_encoding.

Refer to "5.2.2 Message Language and Encoding System Used by Applications Settings" in "C Library (libpq)" for
information on the settings for the library for C.

6.2.3 Settings for Encrypting Communication Data
When encrypting the communication data, the same environment settings as when using the C library (libpq) are required.

Refer to "5.2.3 Settings for Encrypting Communication Data" in "C Library (libpq)" for information on the environment
settings for the C library.

- 52 -

6.3 Connecting with the Database

 Point

- It is recommended to use a connection service file to specify connection destinations. In the connection service file, a
name (service name) is defined as a set, comprising information such as connection destination information and various
types of tuning information set for connections. By using the service name defined in the connection service file when
connecting to databases, it is no longer necessary to modify applications when the connection information changes.
Refer to "The Connection Service File" in "Client Interfaces" in the PostgreSQL Documentation for information.

- If using a connection service file, perform either of the procedures below:

- Set the service name as a string literal or host variable, as follows:

tcp:postgresql://?service=my_service

- Set the service name in the environment variable PGSERVICE, and use CONNECT TO DEFAULT

Use the CONNECT statement shown below to create a connection to the database server.

Format

EXEC SQL CONNECT TO target [AS connection-name] [USER user-name];

target

Write in one of the following formats:

- dbname@host:port

- tcp:postgresql://host:port/dbname[?options]

- unix:postgresql://host[:port][/dbname][?options]
(Definition method when using the UNIX domain socket)

- SQL string literal containing one of the above formats

- Reference to a character variable containing one of the above formats

- DEFAULT

user-name

Write in one of the following formats:

- username

- username/password

- username IDENTIFIED BY password

- username USING password

Description of the arguments

Argument Description

dbname Specify the database name.

host Specify the host name for the connection destination.

port Specify the port number for the database server.

The default is "27500".

connection-name Specify connection names to identify connections when multiple connections are to be
processed within a single program.

- 53 -

Argument Description

username Specify the user that will connect with the database.

If this is omitted, the name used will be that of the user on the operating system that is
executing the application.

password Specify a password when authentication is required.

options Specify the following parameter when specifying a time for timeout. Connect parameters
with & when specifying more than one. The following shows the values specified for each
parameter.

- connect_timeout

Specify the timeout for connections.

Specify a value between 0 and 2147483647 (in seconds). There is no limit set if you set
0 or an invalid value. If "1" is specified, the behavior will be the same as when "2" was
specified. An error occurs when a connection cannot be established within the specified
time.

- keepalives

This enables keepalive.

Keepalive is disabled if 0 is specified. Keepalive is enabling when any other value is
specified. The default is keepalive enabled. Keepalive causes an error to occur when it
is determined that the connection with the database is disabled.

- keepalives_idle

Specify the time until the system starts sending keepalive messages when
communication with the database is not being performed.

- Linux

Specify a value between 1 and 32767 (in seconds). The default value of the system
is used if this is not specified.

- Windows(R)

Specify a value between 1 and 2147483647 (in seconds). 7200 will be set as default
if a value outside this range is specified or if nothing is specified.

- keepalives_interval

Specify the interval between resends when there is no response to keepalive messages.

- Linux

Specify a value between 1 and 32767 (in seconds). The default value of the system
is used if this is not specified.

- Windows(R)

Specify a value between 1 and 2147483647 (in seconds). 1 will be set as default if
a value outside this range is specified or if nothing is specified.

- keepalives_count

Specify the number of resends for keepalive messages.

- Linux

Specify a value between 1 and 127. The default value of the system is used if this
is not specified.

- Windows(R)

The system default value is used irrespective of what is specified for this parameter.

- tcp_user_timeout

- 54 -

Argument Description

After establishing the connection, when sending from the client to the server, if the TCP
resend process operates, specify the time until it is considered to be disconnected.

- Linux

Specify a value between 0 and 2147483647 (in millseconds). The default value of
the system is used if 0. 0 will be set as default if nothing is specified.

- Windows(R)

Cannot be specified.

 Note

If a value other than 0 is specified for the tcp_user_timeout parameter, the waiting time set by the tcp_keepalives_idle
parameter and tcp_keepalives_interval parameter will be invalid and the waiting time specified by the tcp_user_timeout
parameter will be used.

Code examples for applications

EXEC SQL CONNECT TO tcp:postgresql://sv1:27500/mydb?

connect_timeout=20&keepalives_idle=20&keepalives_interval=5&keepalives_count=2&keepalives=

1 USER myuser/myuser01;

6.4 Application Development
Refer to "ECPG - Embedded SQL in C" in "Client Interfaces" in the PostgreSQL Documentation for information on
developing applications.

However, when using embedded SQL in C, there are the following differences to the embedded SQL (ECPG) in PostgreSQL
C.

6.4.1 Support for National Character Data Types
This section describes how to use the national character data types using the SQL embedded C preprocessor.

The following explains the C language variable types corresponding to the NCHAR type:

Specify the number of characters specified for the NCHAR type multiple by 4, plus 1 for the length of the host variable.

Data Type Host variable type

NATIONAL CHARACTER(n) NCHAR variable name [nx4+1]

NATIONAL CHARACTER
VARYING(n)

NVARCHAR variable name [nx4+1]

 See

Refer to "Handling Character Strings" in "Client Interfaces" in the PostgreSQL documentation for information on using
character string types.

6.4.2 Compiling Applications
Append the extension "pgc" to the name of the source file for the embedded SQL in C.

When the pgc file is precompiled using the ecpg command, C source files will be created, so use the C compiler for the
compile.

- 55 -

Precompiling example

ecpg testproc.pgc

If an optimizer hint block comment is specified for the SQL statement, specify the following option in the ecpg command:

--enable-hint

Enables the optimizer hint block comment (hereafter, referred to as the "hint clause"). If this option is not specified, the
hint clause will be removed as a result of the ecpg precompile and be disabled.

The SQL statements that can be specified in the hint clause are SELECT, INSERT, UPDATE, and DELETE.

The locations in which the hint clause can be specified are immediately after one of the SELECT, INSERT, UPDATE,
DELETE, or WITH keywords. A syntax error will occur if any other location is specified.

Example of specifying the hint clause

EXEC SQL SELECT /*+ IndexScan(prod ix01) */ name_id INTO :name_id FROM prod WHERE id

= 1;

Refer to "11.1.1 Optimizer Hints" for information on optimizer hints.

 Note

Take the following points into account when using embedded SQL source files:

- Multibyte codes expressed in SJIS or UTF-16 cannot be included in statements or host variable declarations specified in
EXEC SQL.

- Do not use UTF-8 with a byte order mark (BOM), because an error may occur during compilation if the BOM character
is incorrectly recognized as the source code.

- Multibyte characters cannot be used in host variable names.

- It is not possible to use a TYPE name that contains multibyte characters, even though it can be defined.

Specify the following paths when compiling a C application output with precompiling.

Refer to your compiler documentation for information on how to specify the path.

Linux

Table 6.1 Include file and library path

Type of Path Path name

Path of the include file fujitsuEnterprisePostgresClientInstallDir/include

Path of the library fujitsuEnterprisePostgresClientInstallDir/lib

Table 6.2 C Library

Type of library Library name Note

Dynamic library libecpg.so

libpgtypes.so When using the pgtypes library

Static library libecpg.a

libpgtypes.a When using the pgtypes library

- 56 -

Windows(R)

If the include file and the library path have been set in the environment variable, there is no need to specify the paths shown
below for the compile.

Table 6.3 Include file and library path

Type of Path Path name

Path of the include file fujitsuEnterprisePostgresClientInstallDir\include

Path of the library fujitsuEnterprisePostgresClientInstallDir\lib

Table 6.4 C Library

Type of library Library name Note

Library for links libecpg.lib

libpgtypes.lib When using the pgtypes library

Dynamic library libecpg.dll

libpgtypes.dll When using the pgtypes library

 Note

- The libecpg library in Windows(R) is created by "release" and "multithreaded" options. When using the ECPGdebug
function included in this library, compile using the "release" and "multithreaded" flags in all programs that use this
library. When you do this, use the "dynamic" flag if you are using libecpg.dll, and use the "static" flag if you are using
libecpg.lib.

Refer to "Library Functions" in "Client Interfaces" in the PostgreSQL Documentation for information on the
ECPGdebug function.

- The cl command expects input to be a program that uses one of the following code pages, so convert the program to
these code pages and then compile and link it (refer to the Microsoft documentation for details).

- ANSI console code pages (example: Shift-JIS for Japanese)

- UTF-16 little-endian with or without BOM (Byte Order Mark)

- UTF-16 big-endian with or without BOM

- UTF-8 with BOM

The cl command converts strings in a program to an ANSI console code page before generating a module, so the data
sent to and received from the database server becomes an ANSI console code page. Therefore, set the coding system
corresponding to the ANSI console code page as the coding system of the client.

Refer to "Character Set Support" in "Server Administration" in the PostgreSQL Documentation for information on
how to set the client encoding system.
(Example: To use environment variables in Japanese, set SJIS in PGCLIENTENCODING.)

6.4.3 Bulk INSERT
This section describes the bulk INSERT.

Synopsis

EXEC SQL [AT conn] [FOR { numOfRows | ARRAY_SIZE }]

 INSERT INTO tableName [(colName [, ...])]

 { VALUES ({ expr | DEFAULT } [, ...]) [, ...] | query }

- 57 -

 [RETURNING * | outputExpr [[AS] outputName] [, ...]

 INTO outputHostVar [[INDICATOR] indicatorVar] [, ...]];

Description

Bulk INSERT is a feature that inserts multiple rows of data in bulk.

By specifying the array host variable that stored the data in the VALUES clause of the INSERT statement, the data for each
element in the array can be inserted in bulk. This feature is used by specifying the insertion count in the FOR clause
immediately before the INSERT statement.

FOR Clause

Specify the insertion count using numOfRows or ARRAY_SIZE in the FOR clause. The FOR clause can be specified only
in the INSERT statement, not in other update statements.

numOfRows and ARRAY_SIZE

Insertion processing will be executed only for the specified count. However, if the count is 1, it will be assumed that
the FOR clause was omitted when the application is executed. In this case, proceed according to the INSERT
specification in the PostgreSQL Documentation.

Specify the FOR clause as an integer host variable or as a literal.

Specify ARRAY_SIZE to insert all elements of the array in the table. When specifying ARRAY_SIZE, specify at
least one array in expr.

If two or more arrays were specified in expr, it will be assumed that ARRAY_SIZE is the minimum number of
elements in the array.

numOfRows or ARRAY_SIZE must exceed the minimum number of elements in all arrays specified in expr,
outputHostVar, and indicatorVal.

The following example shows how to specify the FOR clause.

int number_of_rows = 10;

int id[25];

char name[25][10];

EXEC SQL FOR :number_of_rows /* will process 10 rows */

INSERT INTO prod (name, id) VALUES (:name, :id);

EXEC SQL FOR ARRAY_SIZE /* will process 25 rows */

INSERT INTO prod (name, id) VALUES (:name, :id);

expr

Specify the value to be inserted in the table. Array host variables, host variable literals, strings, and pointer variables can
be specified. Structure type arrays and pointer variable arrays cannot be specified.

Do not use pointer variables and ARRAY_SIZE at the same time. The reason for this is that the number of elements in
the area represented by the pointer variable cannot be determined.

query

A query (SELECT statement) that supplies the rows to be inserted. The number of rows returned by query must be 1. If
two or more rows are returned, an error will occur. This cannot be used at the same time as ARRAY_SIZE.

outputHostVar, indicatorVal

These must be array host variables or pointer variables.

Error Messages

Given below are the error messages that are output when bulk INSERT functionality is not used correctly.

- 58 -

Message

invalid statement name "FOR value should be positive integer"

Cause

The value given for numOfRows is less than or equal to 0.

Solution

Specify a value that is more than or equal to 1 for numOfRows.

Message

invalid statement name "Host array variable is needed when using FOR ARRAY_SIZE"

Cause

A host array is not specified in the values clause when using the ARRAY_SIZE keyword.

Solution

At least one host array variable should be included in the values clause

Message

SELECT...INTO returns too many rows

Cause

The number of rows returned by the 'SELECT ... INTO' query in the INSERT statement is more than one.

Solution

When the value of numOfRows is more than one, the maximum number of rows that can be returned by the
'SELECT ... INTO' query in the INSERT statement is one.

Limitations

The limitations when using bulk INSERT are given below.

- Array of structures should not be used as an input in the 'VALUES' clause. Attempted use will result in junk data being
inserted into the table.

- Array of pointers should not be used as an input in the 'VALUES' clause. Attempted use will result in junk data being
inserted into the table.

- ECPG supports the use of 'WITH' clause in single INSERT statements. 'WITH' clause cannot be used in bulk INSERT
statements.

- ECPG does not calculate the size of the pointer variable. So when a pointer variable is used that includes multiple
elements, numOfRows should be less than or equal to the number of elements in the pointer. Otherwise, junk data will
be inserted into the table.

- If an error occurs, all bulk INSERT actions will be rolled back, therefore, no rows are inserted. However, if the
RETURNING clause was used, and the error occurred while obtaining the rows after the insertion was successful, the
insertion processing will not be rolled back.

Samples

Given below are some sample usages of the bulk INSERT functionality.

Basic Bulk INSERT

int in_f1[4] = {1,2,3,4};

...

EXEC SQL FOR 3 INSERT INTO target (f1) VALUES (:in_f1);

The number of rows to insert indicated by the FOR clause is 3, so the data in the first 3 elements of the host array variable
are inserted into the table. The contents of the target table will be:

- 59 -

 f1

 1

 2

 3

(3 rows)

Also a host integer variable can be used to indicate the number of rows that will be inserted in FOR clause, which will
produce the same result as above:

int num = 3;

int in_f1[4] = {1,2,3,4};

...

EXEC SQL FOR :num INSERT INTO target (f1) VALUES (:in_f1);

Inserting constant values

Constant values can also be bulk INSERTed into the table as follows:

EXEC SQL FOR 3 INSERT INTO target (f1,f2) VALUES (DEFAULT,'hello');

Assuming the 'DEFAULT' value for the 'f1' column is '0', the contents of the target table will be:

f1 | f2

---+-------

 0 | hello

 0 | hello

 0 | hello

(3 rows)

Using ARRAY_SIZE

'FOR ARRAY_SIZE' can be used to insert the entire contents of a host array variable, without explicitly specifying the
size, into the table.

 int in_f1[4] = {1,2,3,4};

...

EXEC SQL FOR ARRAY_SIZE INSERT INTO target (f1) VALUES (:in_f1);

In the above example, four rows are inserted into the table.

 Note

If there are multiple host array variables specified as input values, then the number of rows inserted is same as the smallest
array size. The example given below demonstrates this usage.

int in_f1[4] = {1,2,3,4};

char in_f3[3][10] = {"one", "two", "three"};

...

EXEC SQL FOR ARRAY_SIZE INSERT INTO target (f1,f3) VALUES (:in_f1,:in_f3);

In the above example, the array sizes are 3 and 4. Given that the smallest array size is 3, only three rows are inserted into
the table. The table contents are given below.

 f1 | f3

----+-------

 1 | one

 2 | two

- 60 -

 3 | three

(3 rows)

Using Pointers as Input

Pointers that contain multiple elements can be used in bulk INSERT.

int *in_pf1 = NULL;

in_pf1 = (int*)malloc(4*sizeof(int));

in_pf1[0]=1;

in_pf1[1]=2;

in_pf1[2]=3;

in_pf1[3]=4;

...

EXEC SQL FOR 4 INSERT INTO target (f1) values (:in_pf1);

The above example will insert four rows into the target table.

Using SELECT query

When using bulk INSERT, the input values can be got from the results of a SELECT statement. For example,

EXEC SQL FOR 4 INSERT INTO target(f1) SELECT age FROM source WHERE name LIKE 'foo';

Assuming that the 'SELECT' query returns one row, the same row will be inserted into the target table four times.

 Note

If the 'SELECT' query returns more than one row, the INSERT statement will throw an error.

EXEC SQL FOR 1 INSERT INTO target(f1) SELECT age FROM source;

In the above example, all the rows returned by the 'SELECT' statement will be inserted into the table. In this context '1'
has the meaning of 'returned row equivalent'.

Using RETURNING clause

Bulk INSERT supports the same RETURNING clause syntax as normal INSERT. An example is given below.

int out_f1[4];

int in_f1[4] = {1,2,3,4};

...

EXEC SQL FOR 3 INSERT INTO target (f1) VALUES (:in_f1) RETURNING f1 INTO :out_f1;

After the execution of the above INSERT statement, the 'out_f1' array will have 3 elements with the values of '1','2' and
'3'.

6.4.4 DECLARE STATEMENT
This section describes the DECLARE STATEMENT.

Synopsis

EXEC SQL [AT connName] DECLARE statementName STATEMENT;

- 61 -

Description

DECLARE STATEMENT is an embedded SQL command that declares an identifier for a prepared statement. The declared
identifier can be used as an identifier in a prepared statement for the following SQL commands:

- EXECUTE

- DECLARE

- DESCRIBE

- PREPARE (Embedded SQL commands)

- PREPARE (SQL commands)

You can associate an identifier in a prepared statement with a connection by executing a DECLARE STATEMENT that
specifies the connection. If you specify an identifier associated with the connection in a later SQL command, the SQL
command is executed using the connection associated with the identifier. The association between the connection and the
identifier in the prepared statement is shared throughout the process.

Only one connection can be associated with a prepared statement of the same name. If you make multiple associations across
files, subsequent DECLARE STATEMENT are ignored. If you associate the same file more than once, precompiling the file
fails.

If you use the identifier associated with a connection in a SQL command, do not use the AT clause. If a connection different
from the connection linked to the identifier using the AT clause is selected, a runtime error will occur.

Parameters

connName

A database connection name established by the CONNECT command.

If AT clause is omitted, no association is made between the connection and the identifier. DECLARE STATEMENT is
executed, but has no effect.

statementName

Specify the identifier of the prepared statement. You can specify either a SQL identifier or a host variable.

Examples

Dynamic SQL statement

DECLARE STATEMENT is primarily used to execute dynamic SQL statements.

EXEC SQL BEGIN DECLARE SECTION;

char dbname[128];

EXEC SQL END DECLARE SECTION;

...

EXEC SQL CONNECT TO postgres AS con1;

EXEC SQL CONNECT TO another_database AS con2;

EXEC SQL AT con1 DECLARE sql_stmt STATEMENT;

EXEC SQL DECLARE cursor_name CURSOR FOR sql_stmt;

EXEC SQL PREPARE sql_stmt FROM "SELECT current_database()";

EXEC SQL OPEN cursor_name;

EXEC SQL FETCH cursor_name INTO :dbname;

EXEC SQL CLOSE cursor_name;

In the example above, the connection 'con1' is associated with the prepared statement identifier 'sql_stmt'. So the current
connection is 'con2', but the embedded SQL commands that follow are executed on 'con1'.

PREPARE AS statement

The following is an example using a PREPARE statement in the SQL command:

EXEC SQL AT db1 DECLARE stmt STATEMENT;

EXEC SQL PREPARE stmt (int) AS

- 62 -

 SELECT * FROM employee WHERE id = $1;

EXEC SQL EXECUTE stmt USING 1;

The above SELECT statement is executed on the connection 'db1'.

Compatibility

DECLARE STATEMENT is not specified in the SQL standard.

See Also

EXECUTE, DECLARE, DESCLIBE, PREPARE (Embedded SQL commands), PREPARE (SQL commands)

 See

- Refer to "Embedded SQL Commands" in "Client Interfaces" in the PostgreSQL documentation for information on the
embedde SQL commands.

- Refer to "SQL Commands" in "Reference" in the PostgreSQL documentation for information on the SQL commands.

6.4.5 Creating Applications while in Database Multiplexing Mode
This section explains points to consider when creating applications while in database multiplexing mode.

 See

- Refer to the Cluster Operation Guide (Database Multiplexing) for information on database multiplexing mode.

- Refer to "Application Development" in the Cluster Operation Guide (PRIMECLUSTER) for points to consider when
creating applications using the failover feature integrated with the cluster software.

6.4.5.1 Errors when an Application Connection Switch Occurs and
Corresponding Actions

If an application connection switch occurs while in database multiplexing mode, explicitly close the connection and then
reestablish the connection or reexecute the application.

The table below shows errors that may occur during a switch, and the corresponding action to take.

State Error information

(*1)
Action

Server failure
or
FUJITSU Enterprise Postgres
system failure

Failure occurs
during access

57P01

57P02

YE000

26000

40001

After the switch is
complete, reestablish
the connection, or
reexecute the
application.

Accessed during
node/system
failure

08001

Switch to the standby server Switched during
access

57P01

57P02

YE000

26000

- 63 -

State Error information
(*1)

Action

40001

Accessed during
switch

08001

*1: Return value of SQLSTATE.

6.4.6 Notes

Notes on creating multithreaded applications

In embedded SQL in C, DISCONNECT ALL disconnects all connections within a process, and therefore it is not thread-safe
in all operations that use connections. Do not use it in multithreaded applications.

- 64 -

Chapter 7 Embedded SQL in COBOL
This chapter describes application development using embedded SQL in COBOL.

7.1 Development Environment
Install FUJITSU Enterprise Postgres Client Package for the architecture to be developed and executed.

 See

Refer to the Installation and Setup Guide for Client for information on the COBOL compiler required for COBOL application
development.

7.2 Setup

7.2.1 Environment Settings
When using embedded SQL in COBOL, the same environment settings as when using the C library (libpq) are required. Refer
to "5.2.1 Environment Settings" in "C Library (libpq)" for information on the environment settings for the library for C.

Additionally, set the following path for the precompiler ecobpg in the PATH environment variable:

Linux

fujitsuEnterprisePostgresClientInstallDir/bin

Windows(R)

fujitsuEnterprisePostgresClientInstallDir\bin

7.2.2 Message Language and Encoding System Used by
Applications

The settings for the message language and the encoding system used by applications should be the same as those required
when using the library for C.

However, in embedded SQL, the PQsetClientEncoding function cannot be used in the encoding system settings. In embedded
SQL, use the SET command to specify the encoding system in client_encoding.

Refer to "5.2.2 Message Language and Encoding System Used by Applications Settings" in "C Library (libpq)" for
information on the settings for the library for C.

7.2.3 Settings for Encrypting Communication Data
When encrypting the communication data, the same environment settings as when using the C library (libpq) are required.

Refer to "5.2.3 Settings for Encrypting Communication Data" in "C Library (libpq)" for information on the environment
settings for the C library.

7.3 Connecting with the Database
Use the CONNECT statement shown below to create a connection to the database server.

Format

EXEC SQL CONNECT TO target [AS connection-name] [USER user-name]END-EXEC.

- 65 -

target

Write in one of the following formats:

- dbname@host:port

- tcp:postgresql://host:port/dbname[?options]

- unix:postgresql://host[:port][/dbname][?options]
(Definition method when using the UNIX domain socket)

- SQL string literal containing one of the above formats

- Reference to a character variable containing one of the above formats

- DEFAULT

 Note

If target is DEFAULT, the AS clause and USER clause cannot be specified.

user-name

Write in one of the following formats:

- username

- username/password

- username IDENTIFIED BY password

- username USING password

Description of the arguments

Argument Description

dbname Specify the database name.

host Specify the host name for the connection destination.

port Specify the port number for the database server.

The default is "27500".

connection-name Specify connection names to identify connections when multiple connections are to be
processed within a single program.

username Specify the user that will connect with the database.

If this is omitted, the name used will be that of the user on the operating system that is
executing the application.

password Specify a password when authentication is required.

options Specify the following parameter when specifying a time for timeout. Connect parameters
with & when specifying more than one. The following shows the values specified for each
parameter.

- connect_timeout

Specify the timeout for connections.

Specify a value between 0 and 2147483647 (in seconds). There is no limit set if you set
0 or an invalid value. If "1" is specified, the behavior will be the same as when "2" was
specified. An error occurs when a connection cannot be established within the specified
time.

- keepalives

This enables keepalive.

- 66 -

Argument Description

Keepalive is disabled if 0 is specified. Keepalive is enabled when any other value is
specified. The default is keepalive enabled. Keepalive causes an error to occur when it
is determined that the connection with the database is disabled.

- keepalives_idle

Specify the time until the system starts sending keepalive messages when
communication with the database is not being performed.

- Linux

Specify a value between 1 and 32767 (in seconds). The default value of the system
is used if this is not specified.

- Windows(R)

Specify a value between 1 and 2147483647 (in seconds). 7200 will be set as default
if a value outside this range is specified or if nothing is specified.

- keepalives_interval

Specify the interval between resends when there is no response to keepalive messages.

- Linux

Specify a value between 1 and 32767 (in seconds). The default value of the system
is used if this is not specified.

- Windows(R)

Specify a value between 1 and 2147483647 (in seconds). 1 will be set as default if
a value outside this range is specified or if nothing is specified.

- keepalives_count

Specify the number of resends for keepalive messages.

- Linux

Specify a value between 1 and 127. The default value of the system is used if this
is not specified.

- Windows(R)

The system default value is used irrespective of what is specified for this parameter.

Code examples for applications

EXEC SQL CONNECT TO tcp:postgresql://sv1:27500/mydb?

connect_timeout=20&keepalives_idle=20&keepalives_interval=5&keepalives_count=2&keepalives=

1 USER myuser/myuser01 END-EXEC.

7.4 Application Development
Refer to "Appendix D ECOBPG - Embedded SQL in COBOL" for information on developing applications.

7.4.1 Support for National Character Data Types
This section describes how to use the national character data types using the SQL embedded COBOL preprocessor.

The table below lists the COBOL variable types supporting the national character data types. The number of characters
specified for the national character data type must be specified for the length of the host variable.

National character data type COBOL variable type

CHARACTER(n) varName PIC N(n)

- 67 -

National character data type COBOL variable type

NATIONAL CHARACTER(n)

CHARACTER VARYING(n)

NATIONAL CHARACTER
VARYING(n)

varName PIC N(n) VARYING

To use COBOL variable types that support national character data types, it is necessary to specify the ECOBPG_NCHAR
environment variable.

ECOBPG_NCHAR={ UTF16LE | UTF16BE | UTF32LE | UTF32BE | SJIS }

In SQL embedded COBOL, specify the encoding of the COBOL variable types that support national character data types.

- UTF16LE: UTF-16 little-endian

- UTF16BE: UTF-16 big-endian

- UTF32LE: UTF-32 little-endian

- UTF32BE: UTF-32 big-endian

- SJIS: Shift JIS

If this environment variable is omitted, the encoding will be determined according to the encoding system of the client.

- If UTF8 is used: UTF16 (endians will be encoded in accordance with endians of the client system)

- If SJIS is used: SJIS

If encoding is specified for the translation option when compiling with NetCOBOL, the encoding specified for the national
character data types should be used for the environment variable ECOBPG_NCHAR.

The list below shows NetCOBOL translation options and their corresponding environment variable ECOBPG_NCHAR
values.

NetCOBOL translation options
Environment variable
ECOBPG_NCHAR

ENCODE (UTF-8,UTF16,LE)

RCS (UTF-16,LE)
UTF-16LE

ENCODE (UTF-8,UTF-16,BE)

RCS (UTF-16,BE)
UTF-16BE

ENCODE (UTF-8,UTF-32,LE) UTF-32LE

ENCODE (UTF-8,UTF-32,BE) UTF-32BE

ENCODE (SJIS,SJIS) SJIS

Not specified No need to specify

Also, if the post-compiling encoding for an application differs from the locale of the execution environment, then the client
encoding must be used for the application.

The list below shows the values supported for the combinations of application encoding, locale of the execution environment,
and client encodings.

Application
encoding

Locale used when
executing an application

Client
encoding

UTF-8
UTF-8 UTF-8

SJIS UTF-8

SJIS UTF-8 SJIS

- 68 -

Application
encoding

Locale used when
executing an application

Client
encoding

SJIS SJIS

Refer to "7.2.2 Message Language and Encoding System Used by Applications" for information on how to set client encoding
systems.

The following example shows host variable declaration of a national character data type.

01 DATA1 PIC N(10).

01 DATA2 PIC N(10) VARYING.

 Note

- Halfwidth characters should not be used for the national character data type COBOL variable.

- The national character data type column attribute obtained by applications should be the CHAR type.

- Encoding cannot be specified using the ENCODING clause, which is a feature of NetCOBOL.

7.4.2 Compiling Applications
Append the extension "pco" to the name of the source file for the embedded SQL in COBOL.

When the pco file is precompiled using the ecobpg command, COBOL source files will be created, so use the COBOL
compiler for the compile.

Precompiling example

ecobpg testproc.pco

For COBOL code notation, "fixed" or "variable" format can be specified as an ecobpg command option. If not specified,
"fixed" format is used.

Refer to "D.1 Precautions when Using Functions and Operators" and "D.12.1 ecobpg" for information on COBOL code
notation and how to specify options for ecobpg.

If an optimizer hint block comment is specified for the SQL statement, specify the following option in the ecobpg command:

--enable-hint

Enables the optimizer hint block comment (hereafter, referred to as the "hint clause"). If this option is not specified, the
hint clause will be removed as a result of the ecobpg precompile and be disabled.

The SQL statements that can be specified in the hint clause are SELECT, INSERT, UPDATE, and DELETE.

The locations in which the hint clause can be specified are immediately after one of the SELECT, INSERT, UPDATE,
DELETE, or WITH keywords. A syntax error will occur if it is specified in any other location.

Example of specifying the hint clause

EXEC SQL SELECT /*+ IndexScan(prod ix01) */ name_id

INTO :name_id FROM prod WHERE id = 1 END-EXEC.

Refer to "11.1.1 Optimizer Hints" for information on optimizer hints.

If the encoding used for embedded SQL source files differs from that of the locale when precompiling was executed, set the
encoding for the embedded SQL source files by specifying the following option for ecobpg.

-E-encode

Specify "UTF8", "SJIS", or "EUC_JP".

If this option is omitted, the encoding is processed based on the locale.

- 69 -

Path of the library file

The ecobpg command defines a group item "sqlca_t" to handle errors, which is defined in the library file stored in the
following path:

Linux

Library file name The storage destination of library file

SQLCA-COBOL.cob fujitsuEnterprisePostgresClientInstallDir/include

Windows(R)

Library file name The storage destination of library file

SQLCA-COBOL.cob fujitsuEnterprisePostgresClientInstallDir\include

When the ecobpg command generates a COBOL file, it inserts a COPY statement with no options to copy the library file.
Therefore, specify the path of the storage destination of library file when compiling. How to specify the path must conform
to your compiler's specifications.

There is also a library file with the same contents without the extension"cob".

 Information

Refer "D.7.2 sqlca”for information on the sqlca_t.

Libraries to use

The applications generated by ecobpg connect to PostgreSQL through the ECPG library. The ECPG library internally loads
the libpq library.

Path of library

Refer to "6.4.2 Compiling Applications" for information on the location and name of the ECPG library. And Refer to "
Chapter 5 C Library (libpq)" for information on the location and name of the libpq library.

The COBOL compiler provides the how to link various libraries, so be sure to specify the path and libraries according to the
specifications of your compiler.

Entry information of subprogram

If you use the ECPG library with a dynamic program structure, copy the entry information stored below. For details, follow
the specifications of your compiler.

Linux

fujitsuEnterprisePostgresClientInstallDir/share/cobol_entry.info

Windows(R)

fujitsuEnterprisePostgresClientInstallDir\share\cobol_entry.info

 Example

The examples of compiling the applications that dynamically links the COBOL language library.
Note that "<x>" indicates the product version.

- 70 -

Linux

- Linux 64-bit application:

cobol -M -o testproc -I/opt/fsepv<x>client64/include -L/opt/fsepv<x>client64/lib -

lecpg -lpq testproc.cob

Windows(R)

The examples of compiling on a 64-bit operating system.

- 64-bit application

> SET LIB=%ProgramFiles%\Fujitsu\fsepv<x>client64\lib;%LIB%

> cobol -I "%ProgramFiles%\Fujitsu\fsepv<x>client64\include" -M testproc.cob

> link testproc.obj F4AGCIMP.LIB LIBCMT.LIB LIBECPG.LIB LIBPQ.LIB /OUT:testproc.exe

- 32-bit application

[NetCOBOL V10.5 or earlier]

> SET LIB=%ProgramFiles(x86)%\Fujitsu\fsepv<x>client32\lib;%LIB%

> cobol32 -I "%ProgramFiles(x86)%\Fujitsu\fsepv<x>client32\include" -M testproc.cob

> link testproc.obj LIBC.LIB F3BICIMP.LIB LIBECPG.LIB LIBPQ.LIB /OUT:testproc.exe

[NetCOBOL V11.0 or later]

> SET LIB=%ProgramFiles(x86)%\Fujitsu\fsepv<x>client32\lib;%LIB%

> cobol32 -I "%ProgramFiles(x86)%\Fujitsu\fsepv<x>client32\include" -M testproc.cob

> link testproc.obj MSVCRT.LIB F3BICIMP.LIB LIBECPG.LIB LIBPQ.LIB /OUT:testproc.exe

7.4.3 Bulk INSERT
This section describes the bulk INSERT.

Synopsis

EXEC SQL [AT conn] [FOR { numOfRows | ARRAY_SIZE }]

 INSERT INTO tableName [(colName [, ...])]

 { VALUES ({ expr | DEFAULT } [, ...]) [, ...] | query }

 [RETURNING * | outputExpr [[AS] outputName] [, ...]

 INTO outputHostVar [[INDICATOR] indicatorVar] [, ...]] END-EXEC

Description

Bulk INSERT is a feature that inserts multiple rows of data in bulk.

By specifying the array host variable that stored the data in the VALUES clause of the INSERT statement, the data for each
element in the array can be inserted in bulk. This feature is used by specifying the insertion count in the FOR clause
immediately before the INSERT statement.

FOR Clause

Specify the insertion count using numOfRows or ARRAY_SIZE in the FOR clause. The FOR clause can be specified only
in the INSERT statement, not in other update statements.

- 71 -

numOfRows and ARRAY_SIZE

Insertion processing will be executed only for the specified count. However, if the count is 1, it will be assumed that
the FOR clause was omitted when the application is executed. In this case, proceed according to the INSERT
specification in the PostgreSQL Documentation.

Specify the FOR clause as an integer host variable or as a literal.

Specify ARRAY_SIZE to insert all elements of the array in the table. When specifying ARRAY_SIZE, specify at
least one array in expr.

If two or more arrays were specified in expr, it will be assumed that ARRAY_SIZE is the minimum number of
elements in the array.

numOfRows or ARRAY_SIZE must exceed the minimum number of elements in all arrays specified in expr,
outputHostVar, and indicatorVal.

The following example shows how to specify the FOR clause.

01 NUMBER-OF-ROWS PIC S9(9) COMP VALUE 10.

01 GROUP-ITEM.

05 ID1 PIC S9(9) OCCURS 25.

05 NAME PIC X(10) OCCURS 25.

* will process 10 rows

EXEC SQL FOR :NUMBER-OF-ROWS

INSERT INTO prod (name, id) VALUES (:NAME, :ID1) END-EXEC

* will process 25 rows

EXEC SQL FOR ARRAY_SIZE

INSERT INTO prod (name, id) VALUES (:NAME, :ID1) END-EXEC

expr

Specify the value to be inserted in the table. Array host variables, host variable literals, strings, and pointer variables can
be specified. Structure type arrays and pointer variable arrays cannot be specified.

Do not use pointer variables and ARRAY_SIZE at the same time. The reason for this is that the number of elements in
the area represented by the pointer variable cannot be determined.

query

A query (SELECT statement) that supplies the rows to be inserted. The number of rows returned by query must be 1. If
two or more rows are returned, an error will occur. This cannot be used at the same time as ARRAY_SIZE.

outputHostVar and indicatorVal

These must be array host variables or pointer variables.

Error Messages

The messages below are output if an error occurs when the bulk INSERT is used.

Message

The value for the FOR clause must be a positive integer.

Cause

The value given for numOfRows is less than or equal to 0.

Solution

Specify a value that is more than or equal to 1 for numOfRows.

Message

- 72 -

Array host variable is needed when using FOR ARRAY_SIZE.

Cause

An array host variable is not specified in the VALUES clause.

Solution

Specify more than one array host variable in the VALUES clause.

Message

The SELECT..INTO query returned too many rows in row number %d.

Cause

The "SELECT ... INTO" query in the INSERT statement returned more than one row.

Solution

If numOfRows is more than one, the maximum number of rows that can be returned in the "SELECT ... INTO" query
in the INSERT statement is one.

Limitations

The limitations when using bulk INSERT are given below.

- Array of structures should not be used as an input in the 'VALUES' clause.

- Array of pointers should not be used as an input in the 'VALUES' clause.

- ECOBPG supports the use of 'WITH' clause in single INSERT statements. 'WITH' clause cannot be used in bulk INSERT
statements.

- If an error occurs, all bulk INSERT actions will be rolled back, therefore, no rows are inserted. However, if the
RETURNING clause was used, and the error occurred while obtaining the rows after the insertion was successful, the
insertion processing will not be rolled back.

Samples

Given below are some sample usages of the bulk INSERT functionality.

Basic Bulk INSERT

01 GROUP-ITEM.

05 IN-F1 PIC S9(9) OCCURS 4.

MOVE 1 TO IN-F1(1)

MOVE 2 TO IN-F1(2)

MOVE 3 TO IN-F1(3)

MOVE 4 TO IN-F1(4)

...

EXEC SQL FOR 3 INSERT INTO target (f1) VALUES (:IN-F1) END-EXEC

The number of rows to insert indicated by the FOR clause is 3, so the data in the first 3 elements of the host array variable
are inserted into the table. The contents of the target table will be:

f1

1

2

3

(3 rows)

Also a host integer variable can be used to indicate the number of rows that will be inserted in FOR clause, which will
produce the same result as above:

01 NUM PIC S9(9) COMP VALUE 3.

01 GROUP-ITEM.

- 73 -

05 IN-F1 PIC S9(9) OCCURS 4.

MOVE 1 TO IN-F1(1)

MOVE 2 TO IN-F1(2)

MOVE 3 TO IN-F1(3)

MOVE 4 TO IN-F1(4)

...

EXEC SQL FOR :NUM INSERT INTO target (f1) VALUES (:IN-F1) END-EXEC

Inserting constant values

Constant values can also be bulk INSERTed into the table as follows:

EXEC SQL FOR 3 INSERT INTO target (f1,f2) VALUES (DEFAULT,'hello') END-EXEC

Assuming the 'DEFAULT' value for the 'f1' column is '0', the contents of the target table will be:

f1 | f2

---+-------

0 | hello

0 | hello

0 | hello

(3 rows)

Using ARRAY_SIZE

'FOR ARRAY_SIZE' can be used to insert the entire contents of a host array variable, without explicitly specifying the
size, into the table.

01 GROUP-ITEM.

05 IN-F1 PIC S9(9) OCCURS 4.

MOVE 1 TO IN-F1(1)

MOVE 2 TO IN-F1(2)

MOVE 3 TO IN-F1(3)

MOVE 4 TO IN-F1(4)

...

EXEC SQL FOR ARRAY_SIZE INSERT INTO target (f1) VALUES (:IN-F1) END-EXEC

 Note

If there are multiple host array variables specified as input values, then the number of rows inserted is same as the smallest
array size. The example given below demonstrates this usage.

01 GROUP-ITEM.

05 IN-F1 PIC S9(9) OCCURS 4.

05 IN-F3 PIC X(10) OCCURS 3.

MOVE 1 TO IN-F1(1)

MOVE 2 TO IN-F1(2)

MOVE 3 TO IN-F1(3)

MOVE 4 TO IN-F1(4)

MOVE "one" TO IN-F3(1)

MOVE "two" TO IN-F3(2)

MOVE "three" TO IN-F3(3)

...

EXEC SQL FOR ARRAY_SIZE INSERT INTO target (f1,f3) VALUES (:IN-F1,:IN-F3) END-EXEC

In the above example, the array sizes are 3 and 4. Given that the smallest array size is 3, only three rows are inserted into
the table. The table contents are given below.

f1 | f3

---+-------

1 | one

- 74 -

2 | two

3 | three

(3 rows)

Using SELECT query

The result of a SELECT query can be used to insert values.

EXEC SQL FOR 4 INSERT INTO target(f1) SELECT age FROM source WHERE name LIKE 'foo' END-

EXEC

In the example above, assuming that the SELECT query returns one row, the same row will be inserted into the table four
times.

 Note

If "2" or more is specified for the FOR clause, the INSERT statement returns an error when two or more rows of query
results are returned.

If "1" is specified for the FOR clause, all rows returned by the SELECT query will be inserted into the table.

EXEC SQL FOR 1 INSERT INTO target(f1) SELECT age FROM source END-EXEC

In the example above, "1" specified for the FOR clause indicates all returned rows.

Using RETURNING clause

Bulk INSERT supports the same RETURNING clause syntax as normal INSERT. An example is given below.

01 GROUP-ITEM.

05 IN-F1 PIC S9(9) OCCURS 4.

05 OUT-F1 PIC S9(9) OCCURS 4.

MOVE 1 TO IN-F1(1)

MOVE 2 TO IN-F1(2)

MOVE 3 TO IN-F1(3)

MOVE 4 TO IN-F1(4)

...

EXEC SQL FOR 3 INSERT INTO target (f1) VALUES (:IN-F1) RETURNING f1 INTO :OUT-F1 END-EXEC

After the execution of the above INSERT statement, the 'out_f1' array will have 3 elements with the values of '1', '2' and
'3'.

7.4.4 DECLARE STATEMENT
Refer to "6.4.4 DECLARE STATEMENT" in "Embedded SQL in C".

7.4.5 Creating Applications while in Database Multiplexing Mode
This section explains points to consider when creating applications while in database multiplexing mode.

 See

- Refer to the Cluster Operation Guide (Database Multiplexing) for information on database multiplexing mode.

- Refer to "Application Development" in the Cluster Operation Guide (PRIMECLUSTER) for points to consider when
creating applications using the failover feature integrated with the cluster software.

- 75 -

7.4.5.1 Errors when an Application Connection Switch Occurs and
Corresponding Actions

If an application connection switch occurs while in database multiplexing mode, explicitly close the connection and then
reestablish the connection or reexecute the application.

The table below shows errors that may occur during a switch, and the corresponding action to take.

State Error
information

(*1)

Action

Server failure
or
FUJITSU Enterprise Postgres
system failure

Failure occurs
during access

57P01

57P02

YE000

26000

40001

After the switch is
complete, reestablish
the connection, or
reexecute the
application.

Accessed during
system failure

08001

Switch to the standby server Switched during
access

57P01

57P02

YE000

26000

40001

Accessed during
switch

08001

*1: Return value of SQLSTATE.

- 76 -

Chapter 8 SQL References
This chapter explains the SQL statement features expanded by FUJITSU Enterprise Postgres.

8.1 Expanded Trigger Definition Feature
This section explains the expanded trigger definition feature.

8.1.1 CREATE TRIGGER
In addition to features of PostgreSQL, triggers can be created with OR REPLACE option and DO option.

Synopsis

CREATE [OR REPLACE] [CONSTRAINT] TRIGGER name { BEFORE | AFTER | INSTEAD OF } { event

[OR ...] }

 ON table_name

 [FROM referenced_table_name]

 [NOT DEFERRABLE | [DEFERRABLE] [INITIALLY IMMEDIATE | INITIALLY DEFERRED]]

 [REFERENCING { { OLD | NEW } TABLE [AS] transition_relation_name } [...]]

 [FOR [EACH] { ROW | STATEMENT }]

 [WHEN (condition)]

 { EXECUTE { FUNCTION | PROCEDURE } function_name (arguments)

| DO [LANGUAGE lang_name] code }

Description

Refer to the PostgreSQL Documentation for information about CREATE TRIGGER. This section describes OR REPLACE
option and DO option.

A trigger which is created with OR REPLACE option and DO option will be associated with the specified table or view and
will execute the specified code by the specified procedural language of DO (unnamed code block) when certain events
occur.

Parameters

OR REPLACE

If the specified trigger is not defined in the table, it defines a new trigger.
If the specified trigger is already defined in the table, the named trigger replaces existing trigger.

code

When the certain events occur, it executes the code in a specified procedural language. The unnamed code block
does not require a prior definition like a function. Syntax is same as procedural language.

lang_name

The name of the language that the function is implemented in. Can be SQL, C, internal, or the name of a user-
defined procedural language. The default is 'plpgsql'.

plpgsql is supported in CREATE TRIGGER.

- 77 -

 Note

- A normal trigger cannot be replaced by a constraint trigger.

- A constraint trigger cannot be replaced by a normal trigger.

- A trigger defined with DO option cannot be replaced by a trigger defined with EXECUTE PROCEDURE option.

- A trigger defined with EXECUTE PROCEDURE option cannot be replaced by a trigger defined with DO option.

Examples

The trigger below executes the code block specified by DO before the table is updated.
(The LANGUAGE is plpgsql)

CREATE TRIGGER check_update

 BEFORE UPDATE ON accounts

 FOR EACH ROW

 DO $$BEGIN RETURN NEW; END;$$;

 Information

When a trigger created with DO option, a new function is created internally. The name of function is "schema name"."
on table name"_"trigger name"_TRIGPROC(serial number).

8.1.2 How to Define Triggers in pgAdmin
The expanded features of the trigger definition can also be used in pgAdmin.

 See

Refer to "pgAdmin Help" for information on how to define triggers using pgAdmin.

- 78 -

Chapter 9 Compatibility with Oracle Databases
This chapter describes the environment settings and functionality offered for features that are compatible with Oracle
databases.

9.1 Overview
Features compatible with Oracle databases are provided. These features enable you to easily migrate to FUJITSU Enterprise
Postgres and reduce the costs of reconfiguring applications.

The table below lists features compatible with Oracle databases.

Table 9.1 Features compatible with Oracle databases
Category Feature

Item Overview

SQL Queries Outer join operator (+) Operator for outer joins

DUAL table Table provided by the system

Functions DECODE Compares values, and if they match, returns a
corresponding value

SUBSTR Extracts part of a string using characters to specify
position and length

NVL Returns a substitute value when a value is NULL

Package DBMS_OUTPUT Sends messages to clients

UTL_FILE (*1) Enables text file operations

DBMS_SQL Enables dynamic SQL execution

*1: It is not available on Windows (R).

See

In addition to the above, refer to the file below for information on the Orafce function.

- Linux:
fujitsuEnterprisePostgresInstallDir/share/doc/extension/README.asciidoc

- Windows(R):
fujitsuEnterprisePostgresInstallDir\doc\extension\README.asciidoc

9.2 Precautions when Using the Features Compatible with
Oracle Databases

This section provides notes on using the features compatible with oracle databases.

9.2.1 Notes on SUBSTR
SUBSTR is implemented in FUJITSU Enterprise Postgres and Oracle databases using different external specifications.

For this reason, when using SUBSTR, define which specification is to take precedence. In the default configuration of
FUJITSU Enterprise Postgres, the specifications of FUJITSU Enterprise Postgres take precedence.

When using the SUBSTR function compatible with Oracle databases, set "oracle" and "pg_catalog" in the "search_path"
parameter of postgresql.conf. You must specify "oracle" before "pg_catalog" when doing this.

- 79 -

search_path = '"$user", public, oracle, pg_catalog'

 Information

- The search_path parameter specifies the order in which schemas are searched. The SUBSTR function in Oracle databases
is defined in the oracle schema.

- Refer to "Statement Behavior" in "Client Connection Defaults" in "Server Administration" in the PostgreSQL
Documentation for information on search_path.

9.2.2 Notes when Integrating with the Interface for Application
Development

The SQL noted in "Table 9.1 Features compatible with Oracle databases" can be used in the interface for application
development. However, outer join operators cannot be used when integrated with Visual Studio.

When integrated with Visual Studio or using the features compatible with Oracle databases from Fujitsu Npgsql .NET Data
Provider, select one of the actions below for the SearchPath parameter, which is one of the pieces of information needed to
connect to databases specified for individual connections.

- Do not specify the SearchPath parameter itself, or

- Specify both "public" and the schema name in the SQL statement.

Note that both "public" and the schema name in the SQL statement must be specified as the SearchPath parameter before
"oracle" and "pg_catalog" when using the Oracle database-compatible feature SUBSTR.

9.3 Queries
The following queries are supported:

- Outer Join Operator (+)

- DUAL Table

9.3.1 Outer Join Operator (+)
In the WHERE clause conditional expression, by adding the plus sign (+), which is the outer join operator, to the column of
the table you want to add as a table join, it is possible to achieve an outer join that is the same as a joined table (OUTER JOIN).

Syntax

SELECT statement

SELECT … [WHERE [NOT] joinCond ...] …

SELECT … [WHERE srchCond]...] …

Join condition

{ colSpec(+) = colSpec | colSpec = colSpec(+) }

 Note

Here we are dealing only with the WHERE clause of the SELECT statement. Refer to "SQL Commands" in "Reference" in
the PostgreSQL Documentation for information on the overall syntax of the SELECT statement.

General rules

WHERE clause

- The WHERE clause specifies search condition or join conditions for the tables that are derived.

- 80 -

- Search conditions are any expressions that return BOOLEAN types as the results of evaluation. Any rows that do not
meet these conditions are excluded from the output. When the values of the actual rows are assigned to variables and
if the expression returns TRUE, those rows are considered to have met the conditions.

- Join conditions are comparison conditions that specify outer join operators. Join conditions in a WHERE clause
return a table that includes all the rows that meet the join conditions, including rows that do not meet all the join
conditions.

- Join conditions take precedence over search conditions. For this reason, all rows returned by the join conditions are
subject to the search conditions.

- The following rules and restrictions apply to queries that use outer join operators. It is therefore recommended to use
FROM clause joined tables (OUTER JOIN) rather than outer join operators:

- Outer join operators can only be specified in the WHERE clause.

- Outer join operators can only be specified for base tables or views.

- To perform outer joins using multiple join conditions, it is necessary to specify outer join operators for all join
conditions.

- When combining join conditions with constants, specify outer join operators in the corresponding column
specification. When not specified, they will be treated as search conditions.

- The results column of the outer join of table t1 is not returned if table t1 is joined with table t2 by specifying an
outer join operator in the column of t1, then table t1 is joined with table t3 by using search conditions.

- It is not possible to specify columns in the same table as the left/right column specification of a join condition.

- It is not possible to specify an expression other than a column specification for outer join operators, but they may
be specified for the columns that compose the expression.

There are the following limitations on the functionality of outer join operators when compared with joined tables
(OUTER JOIN). To use functionality that is not available with outer join operators, use joined tables (OUTER
JOIN).

Table 9.2 Range of functionality with outer join operators

Functionality available with joined tables
(OUTER JOIN)

Outer join operator

Outer joins of two tables Y

Outer joins of three or more tables Y (*1)

Used together with joined tables within the same
query

N

Use of the OR logical operator to a join condition N

Use of an IN predicate to a join condition N

Use of subqueries to a join condition N

Y: Available
N: Not available

*1: The outer joins by outer join operators can return outer join results only for one other table. For this reason,
to combine outer joins of table t1 and table t2 or table t2 and table t3, it is not possible to specify outer join
operators simultaneously for table t2.

 Example

Table configuration

t1

col1 col2 col3

- 81 -

1001 AAAAA 1000

1002 BBBBB 2000

1003 CCCCC 3000

t2

col1 col2

1001 aaaaa

1002 bbbbb

1004 ddddd

Example 1: Return all rows in table t2, including those that do not exist in table t1.

SELECT *

 FROM t1, t2

 WHERE t1.col1(+) = t2.col1;

 col1 | col2 | col3 | col1 | col2

------+------------+------+------+------------

 1001 | AAAAA | 1000 | 1001 | aaaaa

 1002 | BBBBB | 2000 | 1002 | bbbbb

| | | 1004 | ddddd

(3 rows)

This is the same syntax as the joined table (OUTER JOIN) of the FROM clause shown next.

SELECT *

 FROM t1 RIGHT OUTER JOIN t2

ON t1.col1 = t2.col1;

Example 2: In the following example, the results are filtered to records above 2000 in t1.col3 by search conditions, and the
records are those in table t2 that include ones that do not exist in table t1. After filtering with the join conditions, there is further
filtering with the search conditions, so there will only be one record returned.

SELECT *

 FROM t1, t2

 WHERE t1.col1(+) = t2.col1

 AND t1.col3 >= 2000;

 col1 | col2 | col3 | col1 | col2

------+------------+------+------+------------

 1002 | BBBBB | 2000 | 1002 | bbbbb

(1 row)

This is the same syntax as the joined table (OUTER JOIN) of the FROM clause shown next.

SELECT *

 FROM t1 RIGHT OUTER JOIN t2

ON t1.col1 = t2.col1

 WHERE t1.col3 >= 2000;

9.3.2 DUAL Table
DUAL table is a virtual table provided by the system. Use when executing SQL where access to a base table is not required,
such as when performing tests to get result expressions such as functions and operators.

- 82 -

 Example

In the following example, the current system date is returned.

SELECT CURRENT_DATE "date" FROM DUAL;

 date

 2013-05-14

(1 row)

9.4 SQL Function Reference
The following SQL functions are supported:

- DECODE

- SUBSTR

- NVL

9.4.1 DECODE
Description

Compares values and if they match, returns a corresponding value.

Syntax

DECODE(expr, srch, result [, srch, result]... [, default])

General rules

- DECODE compares values of the value expression to be converted and the search values one by one. If the values match,
a corresponding result value is returned. If no values match, the default value is returned if it has been specified. A NULL
value is returned if a default value has not been specified.

- If the same search value is specified more than once, then the result value returned is the one listed for the first occurrence
of the search value.

- The following data types can be used in result values and in the default value:

- CHAR

- VARCHAR

- NCHAR

- NCHAR VARYING

- TEXT

- INTEGER

- BIGINT

- NUMERIC

- DATE

- TIME WITHOUT TIME ZONE

- TIMESTAMP WITHOUT TIME ZONE

- TIMESTAMP WITH TIME ZONE

- The same data type must be specified for the values to be converted and the search values. However, note that different
data types may also be specified if a literal is specified in the search value, and the value expression to be converted

- 83 -

contains data types that can be converted. When specifying literals, refer to "Table A.1 Data type combinations that
contain literals and can be converted implicitly" in "A.3 Implicit Data Type Conversions" for information on the data
types that can be specified.

- If the result values and default value are all literals, the data types for these values will be as shown below:

- If all values are string literals, all will become character types.

- If there is one or more numeric literal, all will become numeric types.

- If there is one or more literal cast to the datetime/time types, all will become datetime/time types.

- If the result values and default value contain a mixture of literals and non-literals, the literals will be converted to the data
types of the non-literals. When specifying literals, refer to "Table A.1 Data type combinations that contain literals and
can be converted implicitly" in "A.3 Implicit Data Type Conversions" for information on the data types that can be
converted.

- The same data type must be specified for all result values and for the default value. However, different data types can be
specified if the data type of any of the result values or default value can be converted - these data types are listed below:

Table 9.3 Data type combinations that can be converted by DECODE (summary)
Other result values or default value

Numeric
type

Characte
r type

Date/time type

Result value
(any)

Numeric type Y N N

Character
type

N Y N

Date/time
type

N N S (*1)

Y: Can be converted
S: Some data types can be converted
N: Cannot be converted

*1: The data types that can be converted for date/time types are listed below:

Table 9.4 Result value and default value date/time data types that can be converted by DECODE
Other result values or default value

DATE
TIME

WITHOUT
TIME ZONE

TIMESTAMP
WITHOUT

TIME ZONE

TIMESTAM
P WITH

TIME ZONE

Result
value
(any)

DATE Y N Y Y

TIME WITHOUT TIME
ZONE

N Y N N

TIMESTAMP WITHOUT
TIME ZONE

Y N Y Y

TIMESTAMP WITH TIME
ZONE

Y N Y Y

Y: Can be converted
N: Cannot be converted

- The data type of the return value will be the data type within the result or default value that is longest and has the highest
precision.

- 84 -

 Example

In the following example, the value of col3 in table t1 is compared and converted to a different value. If the col3 value matches
search value 1, the result value returned is "one". If the col3 value does not match any of search values 1, 2, or 3, the default
value "other number" is returned.

SELECT col1, DECODE(col3, 1000, 'one',

2000, 'two',

3000, 'three',

'other number') "num-word"

FROM t1;

col1 | num-word

------+----------

 1001 | one

 1002 | two

 1003 | three

(3 rows)

9.4.2 SUBSTR
Description

Extracts part of a string using characters to specify position and length.

Syntax

SUBSTR(str, startPos [, len])

General rules

- SUBSTR extracts and returns a substring of string str, beginning at position startPos, for number of characters len.

- When startPos is positive, it will be the number of characters from the beginning of the string.

- When startPos is 0, it will be treated as 1.

- When startPos is negative, it will be the number of characters from the end of the string.

- When len is not specified, all characters to the end of the string are returned. NULL is returned when len is less than 1.

- For startPos and len, specify a SMALLINT or INTEGER type. When specifying literals, refer to "Table A.1 Data type
combinations that contain literals and can be converted implicitly" in "A.3 Implicit Data Type Conversions" for
information on the data types that can be specified.

- The data type of the return value is TEXT.

Note

- There are two types of SUBSTR. One that behaves as described above, and one that behaves the same as SUBSTRING.
The search_path parameter must be modified for it to behave the same as the specification described above.

- It is recommended to set search_path in postgresql.conf. In this case, it will be effective for each instance. Refer to "9.2.1
Notes on SUBSTR" for information on how to configure postgresql.conf.

- The configuration of search_path can be done at the user level or at the database level. Setting examples are shown below.

- Example of setting at the user level

This can be set by executing an SQL command. In this example, user1 is used as the username.

ALTER USER user1 SET search_path = "$user",public,oracle,pg_catalog;

- Example of setting at the database level

This can be set by executing an SQL command. In this example, db1 will be used as the database name.

- 85 -

ALTER DATABASE db1 SET search_path = "$user",public,oracle,pg_catalog;

You must specify "oracle" before "pg_catalog".

- If the change has not been implemented, SUBSTR is the same as SUBSTRING.

 See

Refer to "SQL Commands" in "Reference" in the PostgreSQL Documentation for information on ALTER USER and ALTER
DATABASE.

 Information

The general rules for SUBSTRING are as follows:

- The start position will be from the beginning of the string, whether positive, 0, or negative.

- When len is not specified, all characters to the end of the string are returned.

- An empty string is returned if no string is extracted or len is less than 1.

 See

Refer to "String Functions and Operators" under "The SQL Language" in the PostgreSQL Documentation for information on
SUBSTRING.

 Example

In the following example, part of the string "ABCDEFG" is extracted:

SELECT SUBSTR('ABCDEFG',3,4) "Substring" FROM DUAL;

 Substring

 CDEF

(1 row)

SELECT SUBSTR('ABCDEFG',-5,4) "Substring" FROM DUAL;

 Substring

(1 row)

9.4.3 NVL
Description

Returns a substitute value when a value is NULL.

Syntax

NVL(expr1, expr2)

General rules

- NVL returns a substitute value when the specified value is NULL. When expr1 is NULL, expr2 is returned. When expr1
is not NULL, expr1 is returned.

- 86 -

- Specify the same data types for expr1 and expr2. However, if a constant is specified in expr2, and the data type can also
be converted by expr1, different data types can be specified. When this happens, the conversion by expr2 is done to suit
the data type in expr1, so the value of expr2 returned when expr1 is a NULL value will be the value converted in the data
type of expr1.

- When specifying literals, refer to "Table A.1 Data type combinations that contain literals and can be converted
implicitly" in "A.3 Implicit Data Type Conversions" for information on the data types that can be converted.

 Example

In the following example, "IS NULL" is returned if the value of col1 in table t1 is a NULL value.

SELECT col2, NVL(col1,'IS NULL') "nvl" FROM t1;

 col2 | nvl

------+---------

 aaa | IS NULL

(1 row)

9.5 Package Reference
A "package" is a group of features, brought together by schemas, that have a single functionality, and are used by calling from
PL/pgSQL.

The following packages are supported:

- DBMS_OUTPUT

- UTL_FILE

- DBMS_SQL

To call the different functionalities from PL/pgSQL, use the PERFORM statement or SELECT statement, using the package
name to qualify the name of the functionality. Refer to the explanations for each of the package functionalities for information
on the format for calling.

9.5.1 DBMS_OUTPUT
Overview

Sends messages to clients such as psql from PL/pgSQL.

Features

Features Description

ENABLE Enables features of this package.

DISABLE Disables features of this package.

SERVEROUTPUT Controls whether messages are sent.

PUT Sends messages.

PUT_LINE Sends messages with a newline character appended.

NEW_LINE Sends a newline character.

GET_LINE Retrieves a line from the message buffer.

GET_LINES Retrieves multiple lines from the message buffer.

Syntax

{ ENABLE([buffSize])

| DISABLE()

| SERVEROUTPUT(sendMsgs)

- 87 -

| PUT(str)

| PUT_LINE(str)

| NEW_LINE()

| GET_LINE()

| GET_LINES(maxLineNum)

}

9.5.1.1 Description
This section explains each feature of DBMS_OUTPUT.

ENABLE

- ENABLE enables the use of PUT, PUT_LINE, NEW_LINE, GET_LINE, and GET_LINES.

- With multiple executions of ENABLE, the value specified last is the buffer size (in bytes). Specify a buffer size from
2000 to 1000000.

- The default value of the buffer size is 20000. If NULL is specified as the buffer size, 1000000 will be used.

- If ENABLE has not been executed, PUT, PUT_LINE, NEW_LINE, GET_LINE, and GET_LINES are ignored even
if they are executed.

 Example

PERFORM DBMS_OUTPUT.ENABLE(20000);

DISABLE

- DISABLE disables the use of PUT, PUT_LINE, NEW_LINE, GET_LINE, and GET_LINES.

- Remaining buffer information is discarded.

 Example

PERFORM DBMS_OUTPUT.DISABLE();

SERVEROUTPUT

- SERVEROUTPUT controls whether messages are sent.

- Specify TRUE or FALSE for sendMsgs.

- If TRUE is specified, when PUT, PUT_LINE, or NEW_LINE is executed, the message is sent to a client such as psql
and not stored in the buffer.

- If FALSE is specified, when PUT, PUT_LINE, or NEW_LINE is executed, the message is stored in the buffer and
not sent to a client such as psql.

 See

Refer to "Boolean Type" in "Data Types" in "The SQL Language" in the PostgreSQL Documentation for information
on boolean type (TRUE/FALSE) values.

- 88 -

 Example

PERFORM DBMS_OUTPUT.SERVEROUTPUT(TRUE);

PUT

- PUT sets the message to be sent.

- The string is the message to be sent.

- When TRUE is specified for SERVEROUTPUT, the messages are sent to clients such as psql.

- When FALSE is specified for SERVEROUTPUT, the messages are retained in the buffer.

- PUT does not append a newline character. To append a newline character, execute NEW_LINE.

- If a string longer than the buffer size specified in ENABLE is sent, an error occurs.

 Example

PERFORM DBMS_OUTPUT.PUT('abc');

PUT_LINE

- PUT_LINE sets the message to be sent appended with a newline character.

- The string is the message that is sent.

- When TRUE is specified for SERVEROUTPUT, the messages are sent to clients such as psql.

- When FALSE is specified for SERVEROUTPUT, the messages are retained in the buffer.

- PUT_LINE appends a newline character to the end of messages.

- If a string longer than the buffer size specified in ENABLE is sent, an error occurs.

 Example

PERFORM DBMS_OUTPUT.PUT_LINE('abc');

NEW_LINE

- NEW_LINE appends a newline character to the message created with PUT.

- When TRUE is specified for SERVEROUTPUT, the messages are sent to clients such as psql.

- When FALSE is specified for SERVEROUTPUT, the messages are retained in the buffer.

 Example

PERFORM DBMS_OUTPUT.NEW_LINE();

- 89 -

GET_LINE

- GET_LINE retrieves a line from the message buffer.

- Use a SELECT statement to obtain the retrieved line and status code returned by the operation, which are stored in
the line and status columns.

- The line column stores the line retrieved from the buffer. The data type of line is TEXT.

- The status column stores the status code returned by the operation: 0-completed successfully; 1-failed because there
are no more lines in the buffer. The data type of status is INTEGER.

- If GET_LINE or GET_LINES is executed and then PUT, PUT_LINE, or NEW_LINE is while messages that have
not been retrieved from the buffer still exist, the messages not retrieved from the buffer will be discarded.

 Example

DECLARE

 buff1 VARCHAR(20);

 stts1 INTEGER;

BEGIN

 SELECT line,status INTO buff1,stts1 FROM DBMS_OUTPUT.GET_LINE();

GET_LINES

- GET_LINES retrieves multiple lines from the message buffer.

- Use a SELECT statement to obtain the retrieved lines and the number of lines retrieved, which are stored in the lines
and numlines columns.

- The lines column stores the lines retrieved from the buffer. The data type of lines is TEXT.

- The numlines column stores the number of lines retrieved from the buffer. The data type of numlines is INTEGER.

- maxLineNum is the maximum number of lines to retrieve from the buffer. The data type is INTEGER.

- If GET_LINE or GET_LINES is executed and then PUT, PUT_LINE, or NEW_LINE is executed while messages
that have not been retrieved from the buffer still exist, the messages not retrieved from the buffer will be discarded.

 Example

DECLARE

 buff VARCHAR(20)[10];

 stts INTEGER := 10;

BEGIN

 SELECT lines, numlines INTO buff,stts FROM DBMS_OUTPUT.GET_LINES(stts);

9.5.1.2 Example
A usage example of DBMS_OUTPUT is shown below.

CREATE FUNCTION dbms_output_exe() RETURNS VOID AS $$

DECLARE

 buff1 VARCHAR(20);

 buff2 VARCHAR(20);

 stts1 INTEGER;

 stts2 INTEGER;

BEGIN

 PERFORM DBMS_OUTPUT.DISABLE();

- 90 -

 PERFORM DBMS_OUTPUT.ENABLE();

 PERFORM DBMS_OUTPUT.SERVEROUTPUT(FALSE);

 PERFORM DBMS_OUTPUT.PUT('DBMS_OUTPUT TEST 1');

 PERFORM DBMS_OUTPUT.NEW_LINE();

 PERFORM DBMS_OUTPUT.PUT_LINE('DBMS_OUTPUT TEST 2');

 SELECT line,status INTO buff1,stts1 FROM DBMS_OUTPUT.GET_LINE();

 SELECT line,status INTO buff2,stts2 FROM DBMS_OUTPUT.GET_LINE();

 PERFORM DBMS_OUTPUT.SERVEROUTPUT(TRUE);

 PERFORM DBMS_OUTPUT.PUT_LINE(buff1);

 PERFORM DBMS_OUTPUT.PUT_LINE(buff2);

END;

$$ LANGUAGE plpgsql;

SELECT dbms_output_exe();

DROP FUNCTION dbms_output_exe();

9.5.2 UTL_FILE
Overview

Text files can be written and read using PL/pgSQL.

To perform these file operations, the directory for the operation target must be registered in the
UTL_FILE.UTL_FILE_DIR table beforehand. Use the INSERT statement as the database administrator or a user who
has INSERT privileges to register the directory. Also, if the directory is no longer necessary, delete it from the same table.
Refer to "9.5.2.1 Registering and Deleting Directories" for information on the how to register and delete the directory.

 Note

- When performing file operations, access privileges for the UTL_FILEUTL_FILE_DIR table are required according
to the operation. However, because the user performing file operations can access any file regardless of the operating
system access privileges for the target file, set the access privileges for the table appropriately so that important files
are not accessed by any user.

- It is not available on Windows (R).

Refer to "C.1 UTL_FILE.UTL_FILE_DIR" for information on the UTL_FILE.UTL_FILE_DIR table.

Declare the file handler explained hereafter as follows in PL/pgSQL:

DECLARE

f UTL_FILE.FILE_TYPE;

Features

Feature Description

FCLOSE Closes a file.

FCLOSE_ALL Closes all files open in a session.

FCOPY Copies a whole file or a contiguous portion thereof.

FFLUSH Flushes the buffer.

FGETATTR Retrieves the attributes of a file.

FOPEN Opens a file.

FRENAME Renames a file.

GET_LINE Reads one line from a text file.

IS_OPEN Checks if a file is open.

NEW_LINE Writes newline characters.

- 91 -

Feature Description

PUT Writes a string.

PUT_LINE Appends a newline character to a string and writes the string.

PUTF Writes a formatted string.

Syntax

{ FCLOSE(fileHandle)

| FCLOSE_ALL()

| FCOPY(srcDir, srcFileName, destDir, destFileName

 [{,startLine | ,startLine ,endLine }])

| FFLUSH(fileHandle)

| FGETATTR(dir, filename)

| FOPEN(dir, fileName, openMode [, maxLineSize])

| FRENAME(srcDir, srcFileName, destDir, destFileName [,overwrite])

| GET_LINES(fileHandle [,len])

| IS_OPEN(fileHandle)

| NEW_LINE(fileHandle [, numOfNewLines])

| PUT(fileHandle, str)

| PUT_LINE(fileHandle, str [, writeToFile])

| PUTF(fileHandle, fmt [, args]...])

}

9.5.2.1 Registering and Deleting Directories

Registering the directory

1. Check if the directory is already registered (if it is, then step 2 is not necessary).

SELECT * FROM UTL_FILE.UTL_FILE_DIR WHERE dir='/home/fsep';

2. Register the directory.

INSERT INTO UTL_FILE.UTL_FILE_DIR VALUES('/home/fsep');

Deleting the directory

DELETE FROM UTL_FILE.UTL_FILE_DIR WHERE dir='/home/fsep';

9.5.2.2 Description
This section explains each feature of UTL_FILE.

FCLOSE

- FCLOSE closes a file that is open.

- Specify an open file handle.

- The value returned is a NULL value.

 Example

f := UTL_FILE.FCLOSE(f);

- 92 -

FCLOSE_ALL

- FCLOSE_ALL closes all files open in a session.

- Files closed with FCLOSE_ALL can no longer be read or written.

 Example

PERFORM UTL_FILE.FCLOSE_ALL();

FCOPY

- FCOPY copies a whole file or a contiguous portion thereof. The whole file is copied if startLine and endLine are not
specified.

- Specify the directory location of the source file.

- Specify the source file.

- Specify the directory where the destination file will be created.

- Specify the file name of the destination file.

- Specify the line number at which to begin copying. Specify a value greater than 0. If not specified, 1 is used.

- Specify the line number at which to stop copying. If not specified, the last line number of the file is used.

 Example

PERFORM UTL_FILE.FCOPY('/home/fsep', 'regress_fsep.txt', '/home/fsep',

'regress_fsep2.txt');

FFLUSH

- FFLUSH forcibly writes the buffer data to a file.

- Specify an open file handle.

 Example

PERFORM UTL_FILE.FFLUSH(f);

FGETATTR

- FGETATTR retrieves file attributes: file existence, file size, and information about the block size of the file.

- Specify the directory where the file exists.

- Specify the file name.

- Use a SELECT statement to obtain the file attributes, which are stored in the fexists, file_length, and blocksize
columns.

- The fexists column stores a boolean (TRUE/FALSE) value. If the file exists, fexists is set to TRUE. If the file does
not exist, fexists is set to FALSE. The data type of fexists is BOOLEAN.

- The file_length column stores the length of the file in bytes. If the file does not exist, file_length is NULL. The data
type of file_length is INTEGER.

- 93 -

- The blocksize column stores the block size of the file in bytes. If the file does not exist, blocksize is NULL. The data
type of blocksize is INTEGER.

 Example

SELECT fexists, file_length, blocksize INTO file_flag, file_len, size FROM

UTL_FILE.FGETATTR('/home/fsep', 'regress_fsep.txt');

FOPEN

- FOPEN opens a file.

- Specify the directory where the file exists.

- Specify the file name.

- Specify the mode for opening the file:
r: Read
w: Write
a: Add

- Specify the maximum string length (in bytes) that can be processed with one operation. If omitted, the default is 1024.
Specify a value from 1 to 32767.

- Up to 50 files per session can be open at the same time.

 Example

f := UTL_FILE.FOPEN('/home/fsep','regress_fsep.txt','r',1024);

FRENAME

- FRENAME renames a file.

- Specify the directory location of the source file.

- Specify the source file to be renamed.

- Specify the directory where the renamed file will be created.

- Specify the new name of the file.

- Specify whether to overwrite a file if one exists with the same name and in the same location as the renamed file. If
TRUE is specified, the existing file will be overwritten. If FALSE is specified, an error occurs. If omitted, FALSE
is set.

 See

Refer to "Boolean Type" in "Data Types" in "The SQL Language" in the PostgreSQL Documentation for information
on boolean type (TRUE/FALSE) values.

 Example

PERFORM UTL_FILE.FRENAME('/home/fsep', 'regress_fsep.txt', '/home/fsep',

 'regress_fsep2.txt', TRUE);

- 94 -

GET_LINE

- GET_LINE reads one line from a file.

- Specify the file handle returned by FOPEN using the r (read) mode.

- Specify the number of bytes to read from the file. If not specified, the maximum string length specified at FOPEN will
be used.

- The return value is the buffer that receives the line read from the file.

- Newline characters are not loaded to the buffer.

- An empty string is returned if a blank line is loaded.

- Specify the maximum length (in bytes) of the data to be read. Specify a value from 1 to 32767. If not specified, the
maximum string length specified at FOPEN is set. If no maximum string length is specified at FOPEN. 1024 is set.

- If the line length is greater than the specified number of bytes to read, the remainder of the line is read on the next call.

- A NO_DATA_FOUND exception will occur when trying to read past the last line.

 Example

buff := UTL_FILE.GET_LINE(f);

IS_OPEN

- IS_OPEN checks if a file is open.

- Specify the file handle.

- The return value is a BOOLEAN type. TRUE represents an open state and FALSE represents a closed state.

 See

Refer to "Boolean Type" in "Data Types" in "The SQL Language" in the PostgreSQL Documentation for information
on boolean type (TRUE/FALSE) values.

 Example

IF UTL_FILE.IS_OPEN(f) THEN

 PERFORM UTL_FILE.FCLOSE(f);

END IF;

NEW_LINE

- NEW_LINE writes one or more newline characters.

- Specify an open file handle.

- Specify the number of newline characters to be written to the file. If omitted, "1" is used.

 Example

PERFORM UTL_FILE.NEW_LINE(f, 2);

- 95 -

PUT

- PUT writes a string to a file.

- Specify the file handle that was opened with FOPEN using w (write) or a (append).

- Specify the string to be written to the file.

- The maximum length (in bytes) of the string to be written is the maximum string length specified at FOPEN.

- The return value is a TEXT type and is the buffer that receives the line loaded from the file.

 Example

PERFORM UTL_FILE.PUT(f, 'ABC');

PUT_LINE

- PUT_LINE appends a newline character to a string and writes the string.

- Specify the file handle that was opened with FOPEN w (write) or a (append).

- Specify whether to forcibly write to the file. If TRUE is specified, file writing is forced. If FALSE is specified, file
writing is asynchronous. If omitted, FALSE will be set.

- The maximum length of the string (in bytes) is the maximum string length specified at FOPEN.

 Example

PERFORM UTL_FILE.PUT_LINE(f, 'ABC', TRUE);

PUTF

- PUTF writes a formatted string.

- Specify the file handle that was opened with FOPEN w (write) or a (append).

- Specify the format, which is a string that includes the formatting characters \n and %s.

- The \n in the format is code for a newline character.

- Specify the same number of input values as there are %s in the format. Up to a maximum of five input values can be
specified. The %s in the format are replaced with the corresponding input characters. If an input value corresponding
to %s is not specified, it is replaced with an empty string.

 Example

PERFORM UTL_FILE.PUTF(f, '[1=%s, 2=%s, 3=%s, 4=%s, 5=%s]\n', '1', '2', '3', '4', '5');

9.5.2.3 Example
The procedure when using UTL_FILE, and a usage example, are shown below.

- 96 -

1. Preparation

Before starting a new job that uses UTL_FILE, register the directory in the UTL_FILE.UTL_FILE_DIR table.

Refer to "9.5.2.1 Registering and Deleting Directories" for information on how to register the directory.

2. Performing a job

Perform a job that uses UTL_FILE. The example is shown below.

CREATE OR REPLACE FUNCTION gen_file(mydir TEXT, infile TEXT, outfile TEXT, copyfile

TEXT) RETURNS void AS $$

DECLARE

 v1 VARCHAR(32767);

 inf UTL_FILE.FILE_TYPE;

 otf UTL_FILE.FILE_TYPE;

BEGIN

 inf := UTL_FILE.FOPEN(mydir, infile,'r',256);

 otf := UTL_FILE.FOPEN(mydir, outfile,'w');

 v1 := UTL_FILE.GET_LINE(inf,256);

 PERFORM UTL_FILE.PUT_LINE(otf,v1,TRUE);

 v1 := UTL_FILE.GET_LINE(inf,256);

 PERFORM UTL_FILE.PUTF(otf,'%s\n',v1);

 v1 := UTL_FILE.GET_LINE(inf, 256);

 PERFORM UTL_FILE.PUT(otf,v1);

 PERFORM UTL_FILE.NEW_LINE(otf);

 PERFORM UTL_FILE.FFLUSH(otf);

 inf := UTL_FILE.FCLOSE(inf);

 otf := UTL_FILE.FCLOSE(otf);

 PERFORM UTL_FILE.FCOPY(mydir, outfile, mydir, copyfile, 2, 3);

 PERFORM UTL_FILE.FRENAME(mydir, outfile, mydir, 'rename.txt');

END;

$$ LANGUAGE plpgsql;

SELECT gen_file('/home/fsep', 'input.txt', 'output.txt', 'copyfile.txt');

3. Post-processing

If you remove a job that uses UTL_FILE, delete the directory information from the UTL_FILE.UTL_FILE_DIR table.
Ensure that the directory information is not being used by another job before deleting it.

Refer to "9.5.2.1 Registering and Deleting Directories" for information on how to delete the directory.

9.5.3 DBMS_SQL
Overview

Dynamic SQL can be executed from PL/pgSQL.

Features

Feature Description

BIND_VARIABLE Sets values in the host variable within the SQL statement.

CLOSE_CURSOR Closes the cursor.

COLUMN_VALUE
Retrieves the value of the column in the select list extracted with
FETCH_ROWS.

DEFINE_COLUMN
Defines the column from which values are extracted and the storage
destination.

EXECUTE Executes SQL statements.

- 97 -

Feature Description

FETCH_ROWS
Positions the specified cursor at the next row and extracts values from
the row.

OPEN_CURSOR Opens a new cursor.

PARSE Parses SQL statements.

 Note

- In DBMS_SQL, the data types supported in dynamic SQL are limited, and therefore the user must consider this. The
supported data types are:

- INTEGER

- DECIMAL

- NUMERIC

- REAL

- DOUBLE PRECISION

- CHAR(*1)

- VARCHAR(*1)

- NCHAR(*1)

- NCHAR VARYING(*1)

- TEXT

- DATE

- TIMESTAMP WITHOUT TIME ZONE

- TIMESTAMP WITH TIME ZONE

- INTERVAL(*2)

- SMALLINT

- BIGINT

*1:
The host variables with CHAR, VARCHAR, NCHAR, and NCHAR VARYING data types are treated as TEXT, to
match the string function arguments and return values. Refer to "String Functions and Operators" in "Functions and
Operators" in "The SQL Language" in the PostgreSQL Documentation for information on string functions.
When specifying the arguments of the features compatible with Oracle databases NVL and/or DECODE, use CAST
to convert the data types of the host variables to ensure that data types between arguments are the same.

*2:
When using COLUMN_VALUE to obtain an INTERVAL type value specified in the select list, use an INTERVAL
type variable with a wide range such as when no interval qualifier is specified, or with a range that matches that of
the variable in the select list. If an interval qualifier variable with a narrow range is specified, then the value within
the interval qualifier range will be obtained, but an error that the values outside the range have been truncated will
not occur.

 Example

This example illustrates where a value expression that returns an INTERVAL value is set in the select list and the
result is received with COLUMN_VALUE. Note that the SQL statement operation result returns a value within the
INTERVAL DAY TO SECOND range.

[Bad example]

- 98 -

Values of MINUTE, and those after MINUTE, are truncated, because the variable(v_interval) is INTERVAL DAY
TO HOUR.

 v_interval INTERVAL DAY TO HOUR;

...

 PERFORM DBMS_SQL.PARSE(cursor, 'SELECT CURRENT_TIMESTAMP - ''2010-01-01'' FROM

DUAL', 1);

...

 SELECT value INTO v_interval FROM DBMS_SQL.COLUMN_VALUE(cursor, 1, v_interval);

 result:1324 days 09:00:00

[Good example]

By ensuring that the variable(v_interval) is INTERVAL, the values are received correctly.

 v_interval INTERVAL;

...

 PERFORM DBMS_SQL.PARSE(cursor, 'SELECT CURRENT_TIMESTAMP - ''2010-01-01'' FROM

DUAL', 1);

...

 SELECT value INTO v_interval FROM DBMS_SQL.COLUMN_VALUE(cursor, 1, v_interval);

 result:1324 days 09:04:37.530623

Syntax

{ BIND_VARIABLE(cursor, varName, val [, len])

| CLOSE_CURSOR(cursor)

| COLUMN_VALUE(cursor, colPos, varName)

| DEFINE_COLUMN(cursor, colPos, varName [, len])

| EXECUTE(cursor)

| FETCH_ROWS(cursor)

| OPEN_CURSOR([parm1])

| PARSE(cursor, sqlStmt, parm1 [, parm2, parm3, parm4])

}

9.5.3.1 Description
This section explains each feature of DBMS_SQL.

BIND_VARIABLE

- BIND_VARIABLE sets values in the host variable within the SQL statement.

- Specify the cursor number to be processed.

- Specify the name of the host variable within the SQL statement using a string for the host variable name.

- Specify the value set in the host variable. The data type of the host variable is the same as that of the value expression
- it is implicitly converted in accordance with its position within the SQL statement. Refer to "A.3 Implicit Data Type
Conversions" for information on implicit conversions.

- If the value is a character type, the string length is the number of characters. If the string length is not specified, the
size is the total length of the string.

- It is necessary to place a colon at the beginning of the host variable in SQL statements to identify the host variable.
The colon does not have to be added to the host variable names specified at BIND_VARIABLE. The following shows
examples of host variable names specified with SQL statements and host variable names specified with
BIND_VARIABLE:

PERFORM DBMS_SQL.PARSE(cursor, 'SELECT emp_name FROM emp WHERE sal > :x', 1);

In this example, BIND_VARIABLE will be as follows:

- 99 -

PERFORM DBMS_SQL.BIND_VARIABLE(cursor, ':x', 3500);

Or,

PERFORM DBMS_SQL.BIND_VARIABLE(cursor, 'x', 3500);

- The length of the host variable name can be up to 30 bytes (excluding colons).

- If the data type of the set value is string, specify the effective size of the column value as the fourth argument.

 Example

If the data type of the value to be set is not a string:

PERFORM DBMS_SQL.BIND_VARIABLE(cursor, ':NO', 1);

If the data type of the value to be set is a string:

PERFORM DBMS_SQL.BIND_VARIABLE(cursor, ':NAME', h_memid, 5);

CLOSE_CURSOR

- CLOSE_CURSOR closes the cursor.

- Specify the cursor number to be processed.

- The value returned is a NULL value.

 Example

cursor := DBMS_SQL.CLOSE_CURSOR(cursor);

COLUMN_VALUE

- COLUMN_VALUE retrieves the value of the column in the select list extracted with FETCH_ROWS.

- Specify the cursor number to be processed.

- Specify the position of the column of the select list in the SELECT statement. The position of the first column is 1.

- Specify the destination variable name.

- Use a SELECT statement to obtain the values of the value, column_error, and actual_length columns.

- The value column returns the value of the column specified at the column position. The data type of the variable name
must match that of the column. If the data type of the column in the SELECT statement specified in PARSE is not
compatible with DBMS_SQL, use CAST to convert to a compatible data type.

- The data type of the column_error column is NUMERIC. If the column value could not be set correctly in the value
column, a value other than 0 will be returned:
22001: The extracted string has been truncated
22002: The extracted value contains a NULL value

- The data type of the actual_length column is INTEGER. If the extracted value is a character type, the number of
characters will be returned (if the value was truncated, the number of characters prior to the truncation will be
returned), otherwise, the number of bytes will be returned.

- 100 -

 Example

When retrieving the value of the column, the error code, and the actual length of the column value:

SELECT value, column_error, actual_length INTO v_memid, v_col_err, v_act_len FROM

DBMS_SQL.COLUMN_VALUE(cursor, 1, v_memid);

When retrieving just the value of the column:

SELECT value INTO v_memid FROM DBMS_SQL.COLUMN_VALUE(cursor, 1, v_memid);

DEFINE_COLUMN

- DEFINE_COLUMN defines the column from which values are extracted and the storage destination.

- Specify the cursor number to be processed.

- Specify the position of the column in the select list in the SELECT statement. The position of the first column is 1.

- Specify the destination variable name. The data type should be match with the data type of the column from which
the value is to be extracted. If the data type of the column in the SELECT statement specified in PARSE is not
compatible with DBMS_SQL, use CAST to convert to a compatible data type.

- Specify the maximum number of characters of character type column values.

- If the data type of the column value is string, specify the effective size of the column value as the fourth argument.

 Example

When the data type of the column value is not a string:

PERFORM DBMS_SQL.DEFINE_COLUMN(cursor, 1, v_memid);

When the data type of the column value is a string:

PERFORM DBMS_SQL.DEFINE_COLUMN(cursor, 1, v_memid, 10);

EXECUTE

- EXECUTE executes SQL statements.

- Specify the cursor number to be processed.

- The return value is an INTEGER type, is valid only with INSERT statement, UPDATE statement, and DELETE
statement, and is the number of rows processed. Anything else is invalid.

 Example

ret := DBMS_SQL.EXECUTE(cursor);

FETCH_ROWS

- FETCH_ROWS positions at the next row and extracts values from the row.

- Specify the cursor number to be processed.

- The return value is an INTEGER type and is the number of rows extracted. 0 is returned if all are extracted.

- 101 -

- The extracted information is retrieved with COLUMN_VALUE.

 Example

LOOP

 IF DBMS_SQL.FETCH_ROWS(cursor) = 0 THEN

 EXIT;

 END IF;

...

END LOOP;

OPEN_CURSOR

- OPEN_CURSOR opens a new cursor.

- The parameter is used for compatibility with Oracle databases only, and is ignored by FUJITSU Enterprise Postgres.
An INTEGER type can be specified, but it will be ignored. If migrating from an Oracle database, specify 1.

- Close unnecessary cursors by executing CLOSE_CURSOR.

- The return value is an INTEGER type and is the cursor number.

 Example

cursor := DBMS_SQL.OPEN_CURSOR();

PARSE

- PARSE analyzes dynamic SQL statements.

- Specify the cursor number to be processed.

- Specify the SQL statement to be parsed.

- Parameters 1, 2, 3, and 4 are used for compatibility with Oracle databases only, and are ignored by FUJITSU
Enterprise Postgres. If you are specifying values anyway, specify the following:
- Parameter 1 is an INTEGER type. Specify 1.
- Parameters 2 and 3 are TEXT types. Specify NULL.
- Parameter 4 is a BOOLEAN type. Specify TRUE.
If migrating from an Oracle database, the specified values for parameters 2, 3, and 4 do not need to be changed.

- Add a colon to the beginning of host variables in SQL statements.

- The DDL statement is executed when PARSE is issued. EXECUTE is not required for the DDL statement.

- If PARSE is called again for opened cursors, the content in the data regions within the cursors is reset, and the SQL
statement is parsed anew.

 Example

PERFORM DBMS_SQL.PARSE(cursor, 'SELECT memid, memnm FROM member WHERE memid = :NO', 1);

- 102 -

9.5.3.2 Example
This section explains the flow of DBMS_SQL and provides an example.

Flow of DBMS_SQL

Example

CREATE FUNCTION smp_00()

RETURNS INTEGER

AS $$

DECLARE

 str_sql VARCHAR(255);

 cursor INTEGER;

 h_smpid INTEGER;

- 103 -

 v_smpid INTEGER;

 v_smpnm VARCHAR(20);

 v_smpage INTEGER;

 errcd INTEGER;

 length INTEGER;

 ret INTEGER;

BEGIN

 str_sql := 'SELECT smpid, smpnm, smpage FROM smp_tbl WHERE smpid < :H_SMPID ORDER BY

smpid';

 h_smpid := 3;

 v_smpid := 0;

 v_smpnm := '';

 v_smpage := 0;

 cursor := DBMS_SQL.OPEN_CURSOR();

 PERFORM DBMS_SQL.PARSE(cursor, str_sql, 1);

 PERFORM DBMS_SQL.BIND_VARIABLE(cursor, ':H_SMPID', h_smpid);

 PERFORM DBMS_SQL.DEFINE_COLUMN(cursor, 1, v_smpid);

 PERFORM DBMS_SQL.DEFINE_COLUMN(cursor, 2, v_smpnm, 10);

 PERFORM DBMS_SQL.DEFINE_COLUMN(cursor, 3, v_smpage);

 ret := DBMS_SQL.EXECUTE(cursor);

 loop

 if DBMS_SQL.FETCH_ROWS(cursor) = 0 then

 EXIT;

 end if;

 SELECT value,column_error,actual_length INTO v_smpid,errcd,length FROM

DBMS_SQL.COLUMN_VALUE(cursor, 1, v_smpid);

 RAISE NOTICE '--';

 RAISE NOTICE '--';

 RAISE NOTICE 'smpid = %', v_smpid;

 RAISE NOTICE 'errcd = %', errcd;

 RAISE NOTICE 'length = %', length;

 SELECT value,column_error,actual_length INTO v_smpnm,errcd,length FROM

DBMS_SQL.COLUMN_VALUE(cursor, 2, v_smpnm);

 RAISE NOTICE '--';

 RAISE NOTICE 'smpnm = %', v_smpnm;

 RAISE NOTICE 'errcd = %', errcd;

 RAISE NOTICE 'length = %', length;

 select value,column_error,actual_length INTO v_smpage,errcd,length FROM

DBMS_SQL.COLUMN_VALUE(cursor, 3, v_smpage);

 RAISE NOTICE '--';

 RAISE NOTICE 'smpage = %', v_smpage;

 RAISE NOTICE 'errcd = %', errcd;

 RAISE NOTICE 'length = %', length;

 RAISE NOTICE '';

 end loop;

 cursor := DBMS_SQL.CLOSE_CURSOR(cursor);

 RETURN 0;

END;

$$ LANGUAGE plpgsql;

- 104 -

Chapter 10 Application Connection Switch Feature
The application connection switch feature enables automatic connection to the target server when there are multiple servers
with redundant configurations.

When using this feature, specify the primary server and secondary server as the connected servers in the application
connection information. A standby server can optionally be prioritized over the primary server as the target server.

If an application connection switch occurs, explicitly close the connection and then reestablish the connection or reexecute
the application. Refer to "Errors when an Application Connection Switch Occurs and Corresponding Actions" of the relevant
client interface for information on how to confirm the switch.

10.1 Connection Information for the Application Connection
Switch Feature

To use the application connection switch feature, set the information shown below when connecting the database.

IP address or host name

Specify the IP address or host name that will be used to configure the database multiplexing system.

Port number

A port number used by each database server to listen for connections from applications.
In each client interface, multiple port numbers can be specified, however in the format shown below, for example:

host1,host2:port2

JDBC and .NET

If only one port number is specified, it will be assumed that host1: 27500 (the default value) and host2:port2 were
specified.
Omit all port numbers, or specify only one per server.

Others

If only one port number is specified, it will be assumed that the same port is used for all the hosts.

Target server

From the specified connection destination server information, specify the selection sequence of the servers to which the
application will connect. The values specified for the target server have the meanings shown below. If a value is omitted,
"any" will be assumed.

Primary server

The primary server is selected as the connection target from the specified "IP addresses or host names". Specify this
to perform tasks that can be performed only on the primary server, such as applications in line with updates, or
management tasks such as REINDEX and VACUUM.

Standby server (this value can be used only when the JDBC or .NET driver is used)

The standby server is selected as the connection target from the specified "IP addresses or host names". On standby
server, the update will always fail. If the target server is not standby, the JDBC driver will throw an error stating that
it is unable to find a server with the specified targetServerType.

Priority given to a standby server

The standby server is selected preferentially as the connection target from the specified "IP addresses or host names".
If there is no standby server, the application will connect to the primary server.

Any

This method is not recommended in database multiplexing systems. This is because, although the connection
destination server is selected in the specified sequence from the specified "IP addresses or host names", if the server
that was successfully connected to first is the standby server, the write operations will always fail.

- 105 -

The table below shows the server selection order values to set for each driver:

Server selection order JDBC

and .NET
drivers

Other drivers

Primary server "master" "read-write"

Standby server "slave" -

Priority given to a standby server "preferSlave" "prefer-read"

Any "any" "any"

SSL server certificate Common Name (CN)

To perform SSL authentication by creating the same server certificate for each server in a multiplexing system, specify
the SSL server certificate Common Name (CN) in this parameter. Accordingly, SSL authentication using the CN can be
performed without having to consider the names of the multiple servers contained in the multiplexing system.

10.2 Using the Application Connection Switch Feature
This section explains how to set the connection destination server using the application connection switch feature.

Of the parameters used as connection information for each client interface, only the parameters specific to the application
connection switch feature are explained here. Refer to "Setup" and "Connecting to the Database" for information on the other
parameters of each client interface.

10.2.1 Using the JDBC Driver
Set the following information in the connection string of the DriverManager class, or in the data source.

Table 10.1 Information to be set

Argument Explanation

host1
host2

Specify the IP address or host name.

port1
port2

Specify the port number for the connection.
The port number can be omitted. If omitted, the default is 27500.

database_name Specify the database name.

targetServerType Specify the selection sequence of the servers to which the application will connect.
Refer to "Target server" for details.

sslmode Specify this to encrypt communications. By default, this is disabled. The setting values for
sslmode are as follows:

disable: Connect without SSL

require: Connect always with SSL

verify-ca: Connect with SSL, using a certificate issued by a trusted CA (*1)

verify-full: Connect with SSL, using a certificate issued by a trusted CA to verify if the
server host name matches the certificate (*1)

sslservercertcn This parameter is enabled only to perform SSL authentication (sslmode=verify-full).

Specify the server certificate CN. If this is omitted, the value will be null, and the server
certificate CN will be authenticated using the host name specified in host.

*1: If specifying either "verify-ca" or "verify-full", the CA certificate file can be specified using connection string
sslrootcert.

- 106 -

When using Driver Manager

Specify the following URL in the API of the DriverManager class:

jdbc:postgresql://host1[:port1],host2[:port2]/dbName[?targetServerType={master | slave

| preferSlave | any}][&sslmode=verify-

full&sslrootcert=cACertificateFile&sslservercertcn=targetServerCertificateCN]

- If the target server is omitted, the default value "any" is used.

- When using IPV6, specify the host in the "[host]" (with square brackets) format.

[Example]

jdbc:postgresql://[2001:Db8::1234]:27500,192.168.1.1:27500/dbName

When using the data source

Specify the properties of the data source in the following format:

source.setServerName("host1[:port1],host2[:port2]");

source.setTargetServerType("master");

source.setSslmode("verify-full");

source.setSslrootcert("cACertificateFile");

source.setSslservercertcn("targetServerCertificateCN");

- If the port number is omitted, the value specified in the portNumber property will be used. Also, if the portNumber
property is omitted, the default is 27500.

- If the target server is omitted, the value will be "any".

- When using IPV6, specify the host in the "[host]" (with square brackets) format.

[Example]

source.setServerName("[2001:Db8::1234]:27500,192.168.1.1:27500");

 Note

If using the connection parameter loginTimeout, the value will be applied for the time taken attempting to connect to all of
the specified hosts.

10.2.2 Using the ODBC Driver
Set the following information in the connection string or data source.

Table 10.2 Information to be set

Parameter Explanation

Servername Specify IP address 1 and IP address 2, or the host name, using a comma as the
delimiter. Based on ODBC rules, it is recommended to enclose the whole string
containing comma delimiters with {}.

Format: {host1,host2}

Port Specify the connection destination port numbers, using a comma as the delimiter.
Based on ODBC rules, it is recommended to enclose the whole string containing
comma delimiters with {}.

Format: {port1,port2}

- 107 -

Parameter Explanation

Specify the port number corresponding to the IP address or host specified for the nth
Servername as the nth Port.

The port number can be omitted. If omitted, the default is 27500.

If n server names are specified, and m ports are specified then there will be error
reported. The only exceptions are where m=n or m=1. In case only one port is
specified, then the same is applied for all the hosts.

target_session_attrs Specify the selection sequence of the servers to which the application will connect.
Refer to "Target server" for details.

SSLMode Specify this to encrypt communications. By default, this is disabled. The setting
values for SSLMode are as follows:

disable: Connect without SSL

allow: Connect without SSL, and if it fails, connect with SSL

prefer: Connect with SSL, and if it fails, connect without SSL

require: Connect always with SSL

verify-ca: Connect with SSL, using a certificate issued by a trusted CA (*1)

verify-full: Connect with SSL, using a certificate issued by a trusted CA to verify if
the server host name matches the certificate (*1)

SSLServerCertCN This parameter is enabled only to perform SSL authentication (SSLMode=verify-
full).

Specify the server certificate CN. If this is omitted, the value will be null, and the
server certificate CN will be authenticated using the host name specified in
Servername.

*1: If specifying either "verify-ca" or "verify-full", use the system environment variable PGSSLROOTCERT of your
operating system to specify the CA certificate file as shown below.

Example)
Variable name: PGSSLROOTCERT
Variable value: cACertificateFile

When specifying a connection string

Specify the following connection string:

...;Servername={host1,host2};Port={port1,port2};[target_session_attrs={read-write |

prefer-read | any}];[SSLMode=verify-full;SSLServerCertCN=targetServerCertificateCN]...

- When using IPV6, specify the host in the "host" format.

[Example]

Servername={2001:Db8::1234,192.168.1.1};Port={27500,27500};

When using the data source

Specify the properties of the data source in the following format:

Servername={host1,host2}

Port={port1,port2}

target_session_attrs={read-write | prefer-read | any }

SSLMode=verify-full

SSLServerCertCN=targetServerCertificateCN

- 108 -

- When using IPV6, specify the host in the "host" format.

[Example]

Servername={2001:Db8::1234,192.168.1.1}

Registering the data source using the ODBC Data Source Administrator

Using the ODBC Data Source Administrator, specify the items within the red border below:

 Note

If using the connection parameter login_timeout, this value is applied for connections to each of the specified hosts. If both
multiplexed database servers have failed, the connection will time out when a time equal to double the login_timeout value
elapses.

10.2.3 Using a .NET Data Provider
Set the following information in the connection string of NpgsqlConnection, or in the data source.

- 109 -

Table 10.3 Information to be set
Argument Explanation

host1
host2

Specify the IP address or host name.

port1
port2

Specify the port number for the connection.

TargetServerType Specify the selection sequence of the servers to which the application will connect.
Refer to "Target server" for details.

When specifying a connection string

Specify the following connection string:

host1[:port1],host2[:port2];[TargetServerType={TargetServerType.master |

TargetServerType.preferSlave | TargetServerType.any}];

- If the port number is omitted from the host string, the value specified for the Port keyword of the connection string
will be used. Refer to "4.3.4 Connection String" for information on the Port keyword.

- When using IPV6, specify the host in the "[host]" (with square brackets) format.

- If the target server type is omitted, the value will be any.

[Example]

host=[2001:Db8::1234]:27500,192.168.1.1:27500;

When specifying the NpgsqlConnectionStringBuilder property, or adding a connection in TableAdapter

Specify the Host property of the data source in the following format:

host1[:port1],host2[:port2]

- If the port number is omitted from the host string, the value specified in the Port property will be used. Also, if the
Port property is omitted, the default is 27500.

Specify the TargetServerType property of the data source in the following format:

TargetServerType.master | TargetServerType.preferSlave | TargetServerType.any

- If the target server type is omitted, the value will be any.

 Note

If using the connection parameter Timeout, this value is applied for connections to each of the specified hosts. If both
multiplexed database servers have failed, the connection will time out when a time equal to double the Timeout value elapses.

10.2.4 Using a Connection Service File
Set the connection parameters as follows.

Table 10.4 Information to be set

Parameter Explanation

host Specify the host names, using a comma as the delimiter.

hostaddr Specify IP address 1 and IP address 2, using a comma as the delimiter.

- 110 -

Parameter Explanation

port Specify the connection destination port numbers, using a comma as the
delimiter.
Specify the port number for the server specified for the nth host or hostaddr as
the nth port.

The port number can be omitted. If omitted, the default is 27500.

If n server names are specified, and m ports are specified then there will be
error reported. The only exceptions are where m=n or m=1. In case only one
port is specified, then the same is applied for all the hosts.

target_session_attrs Specify the selection sequence of the servers to which the application will
connect.
Refer to "Target server" for details.

sslmode Specify this to encrypt communications. By default, this is disabled.
The setting values for sslmode are as follows:

disable: Connect without SSL

allow: Connect without SSL, and if it fails, connect with SSL

prefer: Connect with SSL, and if it fails, connect without SSL

require: Connect always with SSL

verify-ca: Connect with SSL, using a certificate issued by a trusted CA (*1)

verify-full: Connect with SSL, using a certificate issued by a trusted CA to
verify if the server host name matches the certificate (*1)

sslservercertcn This parameter is enabled only to perform SSL authentication
(sslmode=verify-full).

Specify the server certificate CN. If this is omitted, the value will be null, and
the server certificate CN will be authenticated using the host name specified
in host.

*1: If specifying either "verify-ca" or "verify-full", use the system environment variable PGSSLROOTCERT
(connection parameter sslrootcert) of your operating system to specify the CA certificate file as shown below.

Example)
Variable name: PGSSLROOTCERT
Variable value: cACertificateFile

 Note

If using the connection parameter connect_timeout, this value is applied for connections to each of the specified hosts. If both
multiplexed database servers have failed, the connection will time out when a time equal to double the connect_timeout value
elapses.

 Point

If using the C Library, embedded SQL or psql commands (including other client commands that specify connection
destinations), it is recommended to use a connection service file to specify connection destinations.

In the connection service file, a name (service name) is defined as a set, comprising information such as connection
destination information and various types of tuning information set for connections. By using the service name defined in the
connection service file when connecting to databases, it is no longer necessary to modify applications when the connection
information changes.

- 111 -

10.2.5 Using the C Library (libpq)
It is recommended that you use a connection service file. Refer to "10.2.4 Using a Connection Service File" for details.

If a connection service file will not be used, set the following information for the database connection control functions
(PQconnectdbParams, PQconnectdb, and so on) or environment variables.

Table 10.5 Information to be set
Parameter (environment

variable name)
Explanation

host(PGHOST) Specify the host names, using a comma as the delimiter.

hostaddr(PGHOSTADDR) Specify IP address 1 and IP address 2, using a comma as the delimiter.

port(PGPORT) Specify the connection destination port numbers, using a comma as the delimiter.
Specify the port number for the server specified for the nth host or hostaddr as the
nth port.

The port number can be omitted. If omitted, the default is 27500.

If n server names are specified, and m ports are specified then there will be error
reported. The only exceptions are where m=n or m=1. In case only one port is
specified, then the same is applied for all the hosts.

target_session_attrs(PGTA
RGETSESSIONATTRS)

Specify the selection sequence of the servers to which the application will
connect.
Refer to "Target server" for details.

sslmode(PGSSLMODE) Specify this to encrypt communications. By default, this is disabled.
The setting values for sslmode are as follows:

disable: Connect without SSL

allow: Connect without SSL, and if it fails, connect with SSL

prefer: Connect with SSL, and if it fails, connect without SSL

require: Connect always with SSL

verify-ca: Connect with SSL, using a certificate issued by a trusted CA (*1)

verify-full: Connect with SSL, using a certificate issued by a trusted CA to verify
if the server host name matches the certificate (*1)

sslservercertcn(PGXSSLS
ERVERCERTCN)

This parameter is enabled only to perform SSL authentication (sslmode=verify-
full).

Specify the server certificate CN. If this is omitted, the value will be null, and the
server certificate CN will be authenticated using the host name specified in host.

*1: If specifying either "verify-ca" or "verify-full", use the system environment variable PGSSLROOTCERT
(connection parameter sslrootcert) of your operating system to specify the CA certificate file as shown below.

Example)
Variable name: PGSSLROOTCERT
Variable value: cACertificateFile

When using URI

postgresql://host1[:port1],host2[:port2][,...]/database_name

[?target_session_attrs={read-write | prefer-read | any }]

- When using IPV6, specify the host in the "[host]" (with square brackets) format.

[Example]

postgresql://postgres@[2001:Db8::1234]:27500,192.168.1.1:27500/database_name

- 112 -

When using key-value

host=host1[,host2] port=port1[,port2] user=user1 password=pwd1 dbname=mydb

[target_session_attrs={read-write| prefer-read | any }]

- When using IPV6, specify the host in the "host" format.

[Example]

host=2001:Db8::1234,192.168.1.1 port=27500,27500

 Note

If using the connection parameter connect_timeout, this value is applied for connections to each of the specified hosts. If both
multiplexed database servers have failed, the connection will time out when a time equal to double the connect_timeout value
elapses.

 Information

If using a password file (.pgpass), describe the entries matching each server.

- Example 1:

host1:port1:dbname:user:password

host2:port2:dbname:user:password

- Example 2:

*:port:dbname:user:password

10.2.6 Using Embedded SQL
It is recommended that you use a connection service file. Refer to "10.2.4 Using a Connection Service File" for details.

 Point

If using a connection service file, either of the following methods is available:

- Set the service name as a string literal or host variable, as follows:

tcp:postgresql://?service=my_service

- Set the service name in the environment variable PGSERVICE, and use CONNECT TO DEFAULT

If a connection service file will not be used, use a literal or variable to specify the connection destination server information
for target in the SQL statement below:

EXEC SQL CONNECT TO target [AS connection-name] [USER user-name];

Method used

dbname@host1,host2[:[port1][,port2]]

tcp:postgresql://host1,host2[:[port1][,port2]] [/dbname] [?target_session_attrs={read-

write | prefer-read | any}][&sslmode=verify-

full&sslservercertcn=targetServerCertificateCN]

- 113 -

- The above format cannot be specified directly without using a literal or variable.

Table 10.6 Information to be set

Argument Explanation

host1
host2

Specify the IP address or host name. IPv6 format addresses cannot be specified.

port1
port2

Specify the connection destination port numbers, using a comma as the delimiter.
The port number can be omitted. If omitted, the default is 27500.

dbname Specify the database name.

target_session_attrs Specify the selection sequence of the servers to which the application will connect.
Refer to "Target server" for details.

sslmode Specify this to encrypt communications. By default, this is disabled. The setting
values for sslmode are as follows:

disable: Connect without SSL

allow: Connect without SSL, and if it fails, connect with SSL

prefer: Connect with SSL, and if it fails, connect without SSL

require: Connect always with SSL

verify-ca: Connect with SSL, using a certificate issued by a trusted CA (*1)

verify-full: Connect with SSL, using a certificate issued by a trusted CA to verify if the
server host name matches the certificate (*1)

sslservercertcn This parameter is enabled only to perform SSL authentication (sslmode=verify-full).

Specify the server certificate CN. If this is omitted, the value will be null, and the
server certificate CN will be authenticated using the host name specified in host.

*1: If specifying either "verify-ca" or "verify-full", use the system environment variable PGSSLROOTCERT
(connection parameter sslrootcert) of your operating system to specify the CA certificate file as shown below.

Example)
Variable name: PGSSLROOTCERT
Variable value: cACertificateFile

 Point

Environment variables can also be used. Refer to "10.2.5 Using the C Library (libpq)" for information on environment
variables.

 Note

If using the connection parameter connect_timeout, this value is applied for connections to each of the specified hosts. If both
multiplexed database servers have failed, the connection will time out when a time equal to double the connect_timeout value
elapses.

10.2.7 Using the psql Command
It is recommended that you use a connection service file. Refer to "10.2.4 Using a Connection Service File" for details.

- 114 -

If a connection service file will not be used, specify the following information in the psql command option/environment
variable.

Table 10.7 Information to be set

Option (environment
variable)

Explanation

-h/--host(PGHOST/
PGHOSTADDR)

Specify IP address 1 and IP address 2, or the host name, using a comma as the
delimiter.
This can also be specified for the environment variable PGHOST or
PGHOSTADDR.

-p/--port(PGPORT) Specify the connection destination port numbers, using a comma as the delimiter.
This can also be specified for the environment variable PGPORT.

Specify the port number corresponding to the IP address specified for the nth -h
option as the nth -p option.

The port number can be omitted. If omitted, the default is 27500.

If n -h options are specified, and m -p options are specified then there will be error
reported. The only exception is where m=n or m=1. In case only one port is
specified, then the same is applied for all the hosts.

(PGTARGETSESSIONA
TTRS)

Specify the selection sequence of the servers to which the application will
connect.
Refer to "Target server" for details.

(PGSSLMODE) Specify this to encrypt communications. By default, this is disabled.
The setting values for PGSSLMODE are as follows:

disable: Connect without SSL

allow: Connect without SSL, and if it fails, connect with SSL

prefer: Connect with SSL, and if it fails, connect without SSL

require: Connect always with SSL

verify-ca: Connect with SSL, using a certificate issued by a trusted CA (*1)

verify-full: Connect with SSL, using a certificate issued by a trusted CA to verify
if the server host name matches the certificate (*1)

(PGXSSLSERVERCERT
CN)

This environment variable is enabled only to perform SSL authentication
(PGSSLMODE=verify-full).

Specify the server certificate CN. If this is omitted, the value will be null, and the
server certificate CN will be authenticated using the host name specified in host.

*1: If specifying either "verify-ca" or "verify-full", use the system environment variable PGSSLROOTCERT
(connection parameter sslrootcert) of your operating system to specify the CA certificate file as shown below.

Example)
Variable name: PGSSLROOTCERT
Variable value: cACertificateFile

 Note

If using the connection parameter connect_timeout, this value is applied for connections to each of the specified hosts. If both
multiplexed database servers have failed, the connection will time out when a time equal to double the connect_timeout value
elapses.

- 115 -

 Information

Use the same method as for psql commands to specify connection destination server information for other client commands
used to specify connection destinations.

- 116 -

Chapter 11 Performance Tuning
This chapter explains how to tune application performance.

11.1 Enhanced Query Plan Stability
FUJITSU Enterprise Postgres estimates the cost of query plans based on SQL statements and database statistical information,
and selects the least expensive query plan. However, like other databases, FUJITSU Enterprise Postgres does not necessarily
select the most suitable query plan. For example, it may suddenly select unsuitable query plan due to changes in the data
conditions.

In mission-critical systems, stable performance is more important than improved performance, and changes in query plans
case to be avoided. In this situation, by stabilizing the SQL statement query plan so that it does not change, deterioration of
the application performance is suppressed.

11.1.1 Optimizer Hints
This section explains the basic feature content of the optimizer hint (pg_hint_plan).

Refer to the open-source software webpage for information on pg_hint_plan.

In FUJITSU Enterprise Postgres, the optimizer hints can be specified in all application interfaces.

Description

You can specify a query plan in each SQL statement.

List of Features

The main query plans that can be specified using this feature are as follows:

- Query methods

- Join methods

- Join sequences

Query methods

Specify which method to use to query the specified table.

The main features are as follows:

- SeqScan (tableName)

- BitMapScan (tableName [indexName ...])

- IndexScan (tableName [indexName ...])

- IndexOnlyScan (tableName [indexName ...])

 Note

- If the specified index does not exist, or is not related to the search condition column specified in the WHERE clause,
for example, SeqScan will be used.

- Even if IndexOnlyScan is specified, IndexScan may be used if it is necessary to access the table because a row was
updated, for example.

- If multiple query methods were specified for the same table, the method specified last will be used.

- 117 -

Join methods

Specify the join method.

The main features are as follows:

- NestLoop (tableName tableName [tableName ...])

- MergeJoin (tableName tableName [tableName ...])

- HashJoin (tableName tableName [tableName ...])

 Note

- These cannot be specified for view tables and subqueries.

- If multiple methods were specified for the same table combination, the method specified last will be used.

Join sequences

The tables will be joined in the specified table sequence.

Specify the information using the following method:

- Leading ((table table))

The method used to specify [table] is as follows:

table = tableName or (table table)

 Note

If multiple sequences were specified for the same table combination, the sequence specified last will be used.

Usage method

The use of this feature is explained below.

Method used to define this feature

Define this feature by specifying the format (block comment) " /*+ ... */".

- To specify hint clauses in each SELECT statement, for example when there are multiple SELECT statements in the
SQL statement, define all hint clauses in the first block comment.

 Example

Specifying hint clauses for the emp table and the dept table

WITH /*+ IndexScan(emp emp_age_index) IndexScan(dept dept_deptno_index) */ age30

AS (SELECT * FROM emp WHERE age BETWEEN 30 AND 39)

SELECT * FROM age30, dept WHERE age30.deptno = dept.deptno;

- To specify separate hint clauses for the same object in the SQL statement, define aliases in each object, and then
specify hint clauses for those aliases.

 Example

Specifying separate hint clauses for the emp table

- 118 -

WITH /*+ SeqScan(ta) IndexScan(tb) */ over100

AS (SELECT empno FROM emp ta WHERE salary > 1000000)

SELECT * FROM emp tb, over100 WHERE tb.empno = over100.empno AND tb.age < 30

- When using embedded SQL in C, the locations in which the hint clause block comment is specified are restricted.
Refer to "6.4.2 Compiling Applications" for details.

Usage notes

- If a hint clause was specified in multiple block comments in the SQL statement, the hint clause specified in the second
block comment and thereafter will be ignored.

- If characters other than those listed below appear before the hint clause in the SQL statement, they will be invalid even
for hint clause block comments.

- Space, tab, line feed

- Letter (uppercase and lowercase), number

- Underscore, comma

- Brackets ()

11.1.2 Locked Statistics
This section explains the basic feature content for locked statistics (pg_dbms_stats).

Refer to the open-source software webpage for information on pg_dbms_stats.

Description

Locks the statistics.

By using this feature to lock the statistics for performance obtained in job load testing in an environment that simulates a
production environment, performance degradation caused by changes to the query plan after go-live can be suppressed.

Additionally, by using the export and import features, statistics that were checked in the test environment can also be
reproduced in the production environment.

List of Features

The main features that can be specified using this feature are as follows.

[Features]

Feature Details Description

Lock/unlock of the statistics
Lock

Locks the statistics so that the currently selected query plan
remains selected.

Unlock Unlocks the statistics.

Backup/restore of the
statistics

Backup Backs up the current statistics.

Restore
Restores the statistics to the point when they were backed up, and
then locks them.

Purge Deletes backups that are no longer necessary.

Backup/restore using
external files

Export Outputs the current statistics to an external file (binary format).

Import
Reads the statistics from an external file created by the export
feature, and then locks them.

[Target object]

- 119 -

Target resource Range of feature

Database In the database

Schema In the schema

Table In the table

Column ID column

Usage method

The use of this feature is explained below.

Method used to specify this feature

Specify this feature as an SQL function.

The methods used to specify the main features are shown in the table below.

Feature Object Function specified

Lock Database dbms_stats.lock_database_stats()

Schema dbms_stats.lock_schema_stats('schemaName')

Table dbms_stats.lock_table_stats('schemaName.tableName')

Unlock Database dbms_stats.unlock_database_stats()

Schema dbms_stats.unlock_schema_stats('schemaName')

Table dbms_stats.unlock_table_stats('schemaName.tableName')

Import Database dbms_stats.import_database_stats('fullPathOfExportedFile')

Backup
Database

dbms_stats.backup_database_stats('commentUsedForIdentification'
)

Restore Database [Format 1]
dbms_stats.restore_database_stats('timestamp')

[Timestamp]
Specify in the same format as the time column of the backup_history
table. Backups earlier than the specified time will be restored.

[Format 2]
dbms_stats.restore_stats(backupId)

[Backup ID]
Specify a value in the id column of the backup_history table. The
specified backup will be restored.

Purge Backup dbms_stats.purge_stats(backupId,flagUsedForDeletion)

[Backup ID]
Specify a value in the id column of the backup_history table.

[Flag used for deletion]
true: The target backup is forcibly deleted.
false: The target backup is deleted only when there are also backups
for the entire database.

Remark 1: The export feature is executed using the COPY statement, not the SQL function.

- 120 -

 Example

Example 1: Locking the statistics of the entire database

userdb=# SELECT dbms_stats.lock_database_stats();

 lock_database_stats

 tbl1

 tbl1_pkey

Note that the locked information can be referenced as follows:

userdb=# select relname from dbms_stats.relation_stats_locked;

 relname

 tbl1

 tbl1_pkey

Example 2: Unlocking the statistics of the entire database

userdb=# SELECT dbms_stats.unlock_database_stats();

 unlock_database_stats

 tbl1

 tbl1_pkey

Example 3: Backing up the statistics of the entire database

userdb=# SELECT dbms_stats.backup_database_stats('backup1');

 backup_database_stats

 1

Note that the backed up statistics can be referenced as follows:

userdb=# select id,comment,time,unit from dbms_stats.backup_history;

 id | comment | time | unit

 ----+----------+-------------------------------+------

 1 | backup1 | 2014-03-04 11:08:40.315948+09 | d

The ID:1 backup "backup1" is obtained for each database at "2014-03-04 11:08:40.315948+09".
[Meaning of unit] d: database s: schema t: table c: column

Example 4: Exporting the statistics of the entire database

$ psql -d userdb -f export.sql

BEGIN

COMMIT

export.sql is the file in which the COPY statement is defined.
Refer to "export_effective_stats-<x>.sql_sample" for information on the content of the COPY statement. "<x>" indicates
the product version.

"export_effective_stats-<x>.sql_sample" is stored as follows:
fujitsuEnterprisePostgresInstallDir/share/doc/extension

Example 5: Importing the statistics of the entire database

- 121 -

$ psql -d userdb -c "SELECT dbms_stats.import_database_stats ('$PWD/

export_stats.dmp')"

 import_database_stats

(1 row)

Usage notes

- You must run the ANALYZE command once for the target tables of this feature. If the ANALYZE command is not run,
the statistics cannot be locked.
Refer to "SQL Commands" in "Reference" in the PostgreSQL Documentation for information on the ANALYZE
command.

- To use this feature to delete an object that has locked the statistics, use the unlock feature to delete the object lock
information first.

- This feature does not specify the statistics value directly. It reproduces the status that has actually occurred. For this
reason, if the text format is specified in the COPY statement when the export occurs, restore will not be possible. Always
use the binary format when performing the export.

- 122 -

Chapter 12 Scan Using a Vertical Clustered Index
(VCI)

This chapter describes scanning using a VCI.

 Note

This feature can only be used in Advanced Edition.

12.1 Operating Conditions
Faster aggregation can be achieved by using a VCI defined for all columns to be referenced.

This section describes the conditions under which a scan can use a VCI.

Whether to use VCI is determined based on cost estimation in the same way as normal indexes. Therefore, another execution
plan will be selected if it is cheaper than a VCI even if a VCI is available.

SQL statements that can use VCIs

In addition to general SELECT statements, VCIs can be used for the SQL statements below (as long as they do not specify
any of the elements listed in "SQL statements that cannot use VCIs" below):

- SELECT INTO

- CREATE TABLE AS SELECT

- CREATE MATERIALIZED VIEW ... AS SELECT

- CREATE VIEW ... AS SELECT

- COPY (SELECT ...) TO

SQL statements that cannot use VCIs

VCIs cannot be used for SQL statements that specify any of the following:

- Subquery to reference the column in which the parent query is referencing is specified

- Lock clause (such as FOR UPDATE)

- Cursor declared with WITH HOLD or scrollable

- SERIALIZABLE transaction isolation level

- Function or operator listed in "Functions and operators that do not use a VCI"

- User-defined function

Table 12.1 Functions and operators that cannot use VCIs

Classification Function/operator

Mathematical functions
and operators

Random functions random and setseed

String functions and
operators

String functions format (if the format argument is specified), regexp_matches,
regexp_split_to_array and regexp_split_to_table

Date/time functions and
operators

Date/time functions age(timestamp), current_date, current_time,
current_timestamp, localtime, localtimestamp,
statement_timestamp and transaction_timestamp

Delaying execution
functions

pg_sleep, pg_sleep_for, and pg_sleep_until

- 123 -

Classification Function/operator

Enum support functions All functions and operators

Geometric functions and operators All functions and operators

Network address functions and operators All functions and operators

Text search functions and operators All functions and operators

XML functions All functions

JSON functions and operators All functions and operators

Sequence manipulation functions All functions

Array functions and operators All functions and operators

Range functions and operators All functions and operators

Aggregate functions General-purpose
aggregate functions

array_agg, json_agg, json_object_agg, string_agg and
xmlagg

Aggregate functions
for statistics

corr, covar_pop, covar_samp, regr_avgx, regr_avgy,
regr_count, regr_intercept, regr_r2, regr_slope, regr_sxx,
regr_sxy and regr_syy

Ordered-set
aggregate functions

All functions

Hypothetical-set
aggregate functions

All functions

Window functions All functions

Subquery expressions Subquery expressions with its row constructor specified on
the left side

Row and array comparisons Row constructor and composite type comparisons

Set returning functions All functions

System information functions All functions

System administration functions All functions

Trigger functions All functions

Session information functions current_role and current_user

12.2 Usage
This section describes how to use a VCI in line with the following steps:

- 124 -

12.2.1 Designing
Design as follows before using a VCI.

- Execution multiplicity and number of parallel processes

- Parameters

Execution multiplicity and number of parallel processes

Determine the maximum number of SQL statements that can be executed simultaneously and the number of parallel
processes based on the number of CPU cores that can be allocated for scans that use VCI to perform aggregate processing.
Design in advance the multiplicity of SQL statements for executing scans that use VCI and the number of parallel
processes for scans that use VCI.

For example, if the number of CPUs that can be allocated is 32 cores, then the maximum number of SQL statements that
can be executed simultaneously is 8 and the number of parallel processes is 4.

 Note

A temporary file is created in /dev/shm or in a directory specified for the vci.smc_directory parameter as the dynamic
shared memory for each SQL statement during a scan using a VCI.

A temporary file is created in a directory under the data storage directory or in a directory specified for the
vci.smc_directory parameter as the dynamic shared memory for each SQL statement during a scan using a VCI.

Ensure that this directory has sufficient space to meet the memory requirements estimated for the execution multiplicity
and number of parallel processes of SQL statements (refer to "Memory used per scanning" in "VCI Memory
Requirements" in the Installation and Setup Guide for Server for details). If it does not have sufficient space when a scan
is performed, SQL statements will return errors due to the insufficient memory.

Parameters

The VCI parallel scan feature cannot be used for setting parameters immediately after creating an instance.

Therefore, set the parameters below based on the values determined in "Execution multiplicity and number of parallel
processes of SQL statements" above.

Parameter name Description Default Value index

vci.max_parallel_degre
e

Maximum
number of VCI
parallel
processes

0 Specify the number of
parallel processes.

- 125 -

Parameter name Description Default Value index

(background
processes) to be
used per SQL
statement.

vci.smc_directory Directory name
in which a
temporary file
is created as the
dynamic shared
memory during
a scan using a
VCI.

/dev/shm

A directory (dataStorageDir\

\base\\pgsql_tmp) under the data
storage directory

Specify a directory that
has enough free space for
the memory used for each
query during the scan.

max_worker_processes Maximum
number of
background
processes that
the system
supports.

8 Add the value of the
maximum number of SQL
statements that can be
executed simultaneously
for scans that use VCI
multiplied by
vci.max_parallel_degree.

 See

Refer to "Parameters" in the Operation Guide for information on the details of and how to set the parameters.

12.2.2 Checking
Execute the SQL statement with "EXPLAIN ANALYZE" to check the following:

- If a VCI was used
"Custom Scan (VCI...)" is displayed in the plan if a VCI was used.

- Number of parallel processes
The number of parallel processes when the SQL statement is executed is displayed in "Allocated Workers". Check that
it is running the designed number of parallel processes.

- Response
Check if the execution time displayed in "Execution time" is as estimated.

The following shows an example of the output result of EXPLAIN ANALYZE:

EXPLAIN ANALYZE SELECT COUNT(*) FROM test WHERE x > 10000;

 QUERY

PLAN

--

Custom Scan (VCI Aggregate) (cost=19403.15..19403.16 rows=1 width=0) (actual

time=58.505..58.506 rows=1 loops=1)

 Allocated Workers: 4

 -> Custom Scan (VCI Scan) using test_x_idx on test (cost=0.00..16925.00 rows=991261

width=0) (never executed)

 Filter: (x > 10000)

Planning time: 0.151 ms

Execution time: 86.910 ms

(6 rows)

- 126 -

 Note

A cost output by the execution plan that uses a VCI may be inaccurate. A VCI works if all or part of the best execution plan
when the SQL statement was executed is replaced with an execution plan that uses a VCI. If the cost of the execution plan
to be replaced is lower than a certain value (vci.cost_threshold parameter), it will not be replaced or recalculated. Therefore,
the cost of the original execution plan is output as is.

12.2.3 Evaluating
If the results in "12.2.2 Checking" is any of the following, tune accordingly:

If a VCI is not used

- Check if the "12.1 Operating Conditions" are met.

- Check if vci.enable is set to "on".

- A VCI may not be appropriately used when statistics are outdated, such as immediately after inserting a large amount
of data. In such cases, execute the VACUUM ANALYZE statement or the ANALYZE statement.

- A VCI is not used if there is insufficient memory for VCI scan. This may occur during time-consuming transactions
involving tables for which VCIs were defined. Set vci.log_query to "on", and check if either "could not use VCI: local
ROS size (%zu) exceeds limit (%zu)" or "out of memory during local ROS generation" is output. If it is, then increase
the value of the vci.max_local_ros.

Response is not as expected

Tuning may improve response. Check the following:

- If vci.max_parallel_degree is not set or is set to 0, set an appropriate value according to "12.2.1 Designing".

- If there is a margin in the CPU usage, increase the value of vci.max_parallel_degree and check again. In addition, if
the value that of max_worker_processes is lower than the maximum number of SQL statements that can be executed
simultaneously for parallel scan multiplied by vci.max_parallel_degree, increase it and check again.

12.3 Usage Notes
This section provides notes on using VCI.

- Regardless of whether VCI is used, the content of the result does not change. However, records may be returned in a
different order if the ORDER BY clause is not specified.

- To reduce resource consumption, edit postgresql.conf or use the SET statement to enable/disable vci.enable when you
use this feature only for specific times or jobs (SQL applications).

- The optimizer hint (pg_hint_plan) cannot be specified for a VCI. The hint clause is ignored if it is specified.

- If a plan other than VCI is specified for the optimizer hint (pg_hint_plan), a VCI may be used. Therefore, if you specify
a query plan with the hint clause, use the SET statement to set vci.enable to "off".

- The message below may be output when a scan that uses VCI is performed on the streaming replication standby server:

"LOG: recovery has paused"

"HINT: Execute pg_wal_replay_resume() to continue."

This message is output because application of the WAL to the VCI temporarily pauses due to the scan being performed.

- Even if a scan is performed using a VCI, information in the idx_scan, idx_tup_read, and idx_tup_fetch columns of the
collected statistics views, pg_stat_all_indexes and pg_stat_user_indexes, will not be updated.

- 127 -

- Currently, it is not possible to replace the query plan for parallel aggregation with the query plan using VCI. Therefore,
if you create a VCI on a column of a partition table and aggregate (sum () etc.) on that column, one of the following plans
will be selected. Use different setting parameters according to the situation of the target table.

- Plan of the parallel aggregations using scan methods other than VCI scan

It is selected when max_parallel_workers_per_gather is 1 or more.

explain select sum(value) from test;

 QUERY PLAN

 Finalize Aggregate (cost=99906.30..99906.31 rows=1 width=8)

 -> Gather (cost=99906.08..99906.29 rows=2 width=8)

 Workers Planned: 2

 -> Partial Aggregate (cost=98906.08..98906.09 rows=1 width=8)

 -> Parallel Append (cost=0.00..94739.83 rows=1666500 width=4)

 -> Parallel Seq Scan on test_1 (cost=0.00..43203.67 rows=833250

width=4)

 -> Parallel Seq Scan on test_2 (cost=0.00..43203.67 rows=833250

width=4)

This plan is fast when the number of records to be aggregated (number of records that hit the search conditions) is
very large. This is because the benefit of parallelizing aggregation is important, not the performance of scanning. For
example, each parallel worker will perform a sequential scan and aggregate most of the scanned records.

- Plan that aggregates VCI scan results by a single multiplex

It is selected by setting max_parallel_workers_per_gather to 0 and not creating a query plan of parallel aggregate.

explain select sum(value) from test;

 QUERY PLAN

 Aggregate (cost=145571.00..145571.01 rows=1 width=8)

 -> Append (cost=0.00..135572.00 rows=3999600 width=4)

 -> Custom Scan (VCI Scan) using test_1_id_value_idx on test_1

(cost=0.00..57787.00 rows=1999800 width=4)

 Allocated Workers: 2

 -> Custom Scan (VCI Scan) using test_2_id_value_idx on test_2

(cost=0.00..57787.00 rows=1999800 width=4)

 Allocated Workers: 2

This plan is fast when the number of aggregated items is not large or when the size of the aggregated column is
smaller than the record size. This is because the scan performance is more important, so it is faster to aggregate the
results of VCI scans of each partition.

- Originally, if there is only one partition to be accessed, the following VCI aggregation plan can be used. Below is an
example of scanning only one partition with partition pruning.

explain select sum(value) from test where id < 1000001;

 QUERY PLAN

--

 Custom Scan (VCI Aggregate) (cost=62786.50..62786.51 rows=1 width=8)

 Allocated Workers: 2

 -> Custom Scan (VCI Scan) using test_1_id_value_idx on test_1 (cost=0.00..57787.00

rows=1999800 width=4)

 Filter: (id < 1000001)

However, the current planner does not try to choose VCI aggregation because it creates a plan for parallel aggregation
if the table is partitioned. So in this case, set max_parallel_workers_per_gather to 0 to force the planner to choose VCI
aggregation.

- 128 -

Appendix A Precautions when Developing
Applications

This appendix describes precautions when developing applications with FUJITSU Enterprise Postgres.

A.1 Precautions when Using Functions and Operators
This section describes notes for using functions and operators.

A.1.1 General rules of Functions and Operators
This section describes general rules for using functions and operators. Ensure the general rules are followed when using
functions and operators to develop applications.

General rules

- Specify the stated numbers for arguments when specifying numbers for arguments in functions.

- Specify the stated data types when specifying data types for functions. If you use a data type other than the stated data
types, use CAST to explicitly convert the data type.

- Specify data types that can be compared when specifying data types for operators. If you use a data type that cannot
be compared, use CAST to explicitly convert the data type.

 See

Refer to "Functions and Operators" under "The SQL Language" in the PostgreSQL Documentation for information on the
functions and operators available with FUJITSU Enterprise Postgres.

A.1.2 Errors when Developing Applications that Use Functions and/
or Operators

This section provides examples of problems that may occur when developing applications that use functions and/or operators,
and describes how to deal with them.

The error "Function ***** does not exist" occurs when executing SQL

The following error will occur when executing an SQL statement that does not abide by the general rules for functions:

ERROR: Function ****** does not exist

Note: "*****" denotes the function for which the error occurred, and the data type of its arguments.

The cause of the error will be one of the following:

- The specified function does not exist.

- The wrong number of arguments or wrong argument data type was specified

Corrective action

Check the following points and correct any errors:

- Check if there are any errors in the specified function name, number of arguments, or argument data type, and
revise accordingly.

- Check the argument data type of the function displayed in the message. If an unintended data type is displayed,
use a function such as CAST to convert it.

- 129 -

The error "Operator does not exist" occurs when executing SQL

The following error will occur when executing an SQL statement that specifies a data type in the operator that cannot be
compared:

ERROR: Operator does not exist: *****

Note: "*****" denotes the operator for which the error occurred, and the data type of the specified value.

Corrective action

Ensure the data type of the expressions specified on the left and right sides of the operator can be compared. If required,
revise to ensure these data types can be compared by using a function such as CAST to explicitly convert them.

A.2 Notes when Using Temporary Tables
In standard SQL, a temporary table can be defined in advance to enable an empty temporary table to be created automatically
when the application connects to the database. However, in FUJITSU Enterprise Postgres, a temporary table must be created
when the application connects to the database by explicitly using the CREATE TABLE statement.

If the same temporary table is repeatedly created and deleted during the same session, the system table might expand, and
memory usage might increase. To prevent this, specify the CREATE TABLE statement to ensure the temporary table is
reused.

For example, in cases where a temporary table would be created and deleted for repeatedly executed transactions, specify the
CREATE TABLE statement as shown below:

- Specify "IF NOT EXISTS" to create a temporary table only if none exists when the transaction starts.

- Specify "ON COMMIT DELETE ROWS" to ensure all rows are deleted when the transaction ends.

 See

Refer to "SQL Commands" under "Reference" in the PostgreSQL Documentation for information on the CREATE TABLE
statement.

Examples of SQL using a temporary table are shown below:

Example of bad use (creating and deleting a temporary table)

BEGIN;

CREATE TEMPORARY TABLE mytable(col1 CHAR(4), col2 INTEGER) ON COMMIT DROP;

 (mytable processes)

COMMIT;

Example of good use (reusing a temporary table)

BEGIN;

CREATE TEMPORARY TABLE IF NOT EXISTS mytable(col1 CHAR(4), col2 INTEGER) ON COMMIT

DELETE ROWS;

 (mytable processes)

COMMIT;

A.3 Implicit Data Type Conversions
An implicit data type conversion refers to a data type conversion performed automatically by FUJITSU Enterprise Postgres,
without the need to explicitly specify the data type to convert to.

- 130 -

The combination of possible data type conversions differs, depending on whether the expression in the conversion source is
a literal.

For non-literals, data types can only be converted to other types within the same range.

For literals, character string literal types can be converted to the target data type. Numeric literals are implicitly converted to
specific numeric types. These implicitly converted numeric literals can then have their types converted to match the
conversion target data type within the numeric type range. For bit character string literals, only the bit column data type can
be specified. The following shows the range of type conversions for literals.

Table A.1 Data type combinations that contain literals and can be converted implicitly

Conversion target Conversion source

Characte
r literal

(*1)

Numeric
literal(*2)

Bit
character

string
literal

Numeric type SMALLINT Y N N

INTEGER Y Y (*3) N

BIGINT Y Y (*4) N

DECIMAL Y Y (*5) N

NUMERIC Y Y (*5) N

REAL Y N N

DOUBLE PRECISION Y N N

SMALLSERIAL Y N N

SERIAL Y Y (*3) N

BIGSERIAL Y Y (*4) N

Currency type MONEY Y N N

Character type CHAR Y N N

VARCHAR Y N N

NCHAR Y N N

NCHAR VARYING Y N N

TEXT Y N N

Binary data type BYTEA Y N N

Date/time type TIMESTAMP WITHOUT
TIME ZONE

Y N N

TIMESTAMP WITH TIME
ZONE

Y N N

DATE Y N N

TIME WITHOUT TIME
ZONE

Y N N

TIME WITH TIME ZONE Y N N

INTERVAL Y N N

Boolean type BOOLEAN Y N N

Geometric type POINT Y N N

LSEG Y N N

BOX Y N N

- 131 -

Conversion target Conversion source

Characte
r literal

(*1)

Numeric
literal(*2)

Bit
character

string
literal

PATH Y N N

POLYGON Y N N

CIRCLE Y N N

Network address type CIDR Y N N

INET Y N N

MACADDR Y N N

MACADDR8 Y N N

Bit string type BIT Y N Y

BIT VARYING Y N Y

Text search type TSVECTOR Y N N

TSQUERY Y N N

UUID type UUID Y N N

XML type XML Y N N

JSON type JSON Y N N

Y: Can be converted
N: Cannot be converted

*1: Only strings that can be converted to the data type of the conversion target can be specified (such as "1" if the conversion
target is a numeric type)

*2: "Y" indicates specific numeric types that are converted first.

*3: Integers that can be expressed as INTEGER types can be specified

*4: Integers that cannot be expressed as INTEGER types, but can be expressed as BIGINT types, can be specified

*5: Integers that cannot be expressed as INTEGER or BIGINT types, but that can be expressed as NUMERIC types, or
numeric literals that contain a decimal point or the exponent symbol (e), can be specified

Implicit data type conversions can be used when comparing or storing data.

The conversion rules differ, depending on the reason for converting. Purpose-specific explanations are provided below.

A.3.1 Function Argument
Value expressions specified in a function argument will be converted to the data type of that function argument.

 See

Refer to "Functions and Operators" under "The SQL Language" in the PostgreSQL Documentation for information on data
types that can be specified in function arguments.

A.3.2 Operators
Comparison operators, BETWEEN, IN

Combinations of data types that can be compared using comparison operators, BETWEEN, or IN are shown below.

- 132 -

Table A.2 Combinations of comparable data type

Left side Right side

Numeric
type

Charact
er string

type

Date/time
type

Numeric type Y N N

Character
type

N Y N

Date/time
type

N N Y

Y: Can be compared
N: Cannot be compared

When strings with different lengths are compared, the shorter one is padded with spaces to make the lengths match.

When numeric values with different precisions are compared, data will be converted to the type with the higher precision.

Set operation and CASE also follow the same rules.

Other operators

Value expressions specified in operators will be converted to data types that are valid for that operator.

 See

Refer to "Functions and Operators" under "The SQL Language" in the PostgreSQL Documentation for information on
data types that can be specified in operators.

A.3.3 Storing Values
Value expressions specified in the VALUES clause of the INSERT statement or the SET clause of the UPDATE statement
will be converted to the data type of the column in which they will be stored.

A.4 Notes on Using Index
This section explains the notes on using the following indexes:

- SP-GiST index

A.4.1 SP-GiST Index
If more than 2 concurrent updates are performed on a table in which the SP-GiST index is defined, applications may stop
responding. When this occur, all system processes including the Check Pointer process will also be in the state of no response.
For these reasons, use of the SP-GiST index is not recommended.

A.5 Notes on Using Multibyte Characters in Definition
Names

Do not use multibyte characters in database names or user names if using a Windows database server.

Multibyte characters must not be used in database names or user names on non-Windows database servers, because certain
conditions may apply or it may not be possible to connect to some clients.

Related notes and constraints are described below.

- 133 -

1) Configuring the client encoding system

The client encoding system must be configured when the names are created.

 See

Refer to "Character Set Support" in "Server Administration" in the PostgreSQL Documentation for information on how to
configure the client encoding system.

2) Encoding system of names used for connection

Ensure that the encoding system of names used for connection is the same as that of the database that was connected when
these names were created.

The reasons for this are as follows:

- Storage system for names in FUJITSU Enterprise Postgres

The system catalog saves encoded names by using the encoding system of the database at the time the names were
created.

- Encoding conversion policy when connected

When connected, names sent from the client are matched with names in the system catalog without performing encoding
conversion.

Accordingly, if the database that was connected when the names were defined uses the EUC_JP encoding system, but the
database name is specified using UTF-8 encoding, then the database will be considered to be non-existent.

3) Connection constraints

The table below shows the connection constraints for each client type, based on the following assumptions:

- The conditions described in 1) and 2) above are satisfied.

- The database name and user names use the same encoding system.

Client type
Client operating system

Windows(R) Linux

JDBC driver Cannot be connected Cannot be connected

ODBC driver Cannot be connected No connection constraints

.NET Data Provider Can only connect when the encoding
system used for definitions is UTF-8

-

SQLEmbedded SQL in C Can only connect when the
connection service file
(pg_service.conf) is used

No connection constraints

psql command Can only connect when the
connection service file
(pg_service.conf) is used

No connection constraints

- 134 -

Appendix B Conversion Procedures Required due
to Differences from Oracle Database

This appendix explains how to convert from an Oracle database to FUJITSU Enterprise Postgres, within the scope noted in
"Chapter 9 Compatibility with Oracle Databases" from the following perspectives:

- Feature differences

- Specification differences

This document assumes that the version of the Oracle database to be converted is 7-10.2g.

B.1 Outer Join Operator (Perform Outer Join)
Features

In the WHERE clause conditional expression, by adding the plus sign (+), which is the outer join operator, to the column
of the table you want to add as a table join, it is possible to achieve an outer join that is the same as a joined table (OUTER
JOIN).

B.1.1 Comparing with the ^= Comparison Operator

Oracle database

SELECT *

 FROM t1, t2

 WHERE t1.col1(+) ^= t2.col1;

* col1 is assumed to be CHAR(4) type

FUJITSU Enterprise Postgres

SELECT *

 FROM t1, t2

 WHERE t1.col1(+) != t2.col1;

* col1 is assumed to be CHAR(4) type

Feature differences

Oracle database

The ^= comparison operator can be specified.

FUJITSU Enterprise Postgres

The ^= comparison operator cannot be specified.

Conversion procedure

Convert using the following procedure:

1. Locate the places where the keyword "^=" is used.

2. Ensure that the keyword, "(+)", is either on the right or left-hand side.

3. Change "^=" to " !=".

- 135 -

B.2 DECODE (Compare Values and Return Corresponding
Results)

Features

DECODE compares values of the conversion target value expression and the search values one by one, and if the values
of the conversion target value expression and the search values match, a corresponding result value is returned.

B.2.1 Comparing Numeric Data of Character String Types and
Numeric Characters

Oracle database

SELECT DECODE(col1,

 1000, 'ITEM-A',

 2000, 'ITEM-B',

 'ITEM-C')

 FROM t1;

* col1 is assumed to be CHAR(4) type

FUJITSU Enterprise Postgres

SELECT DECODE(CAST(col1 AS INTEGER),

 1000, 'ITEM-A',

 2000, 'ITEM-B',

 'ITEM-C')

 FROM t1;

* col1 is assumed to be CHAR(4) type

Feature differences

Oracle database

When the value expression is a string and the search value is a numeric, the string value will be converted to the data
type of the comparison target numeric, so that they can be compared.

FUJITSU Enterprise Postgres

If the conversion target value expression is a string value, then no search value can be specified with numbers.

Conversion procedure

Since the data type that can be specified for the conversion target value expression is unknown, use CAST to explicitly
convert the conversion target value expression (col1 in the example) to a numeric (INTEGER type in the example).

B.2.2 Obtaining Comparison Result from more than 50 Conditional
Expressions

Oracle database

SELECT DECODE(col1,

 1,'A',

 2,'B',

 ...

 78,'BZ',

 NULL,'UNKNOWN',

 'OTHER')

 FROM t1;

- 136 -

* col1 is assumed to be INTEGER type

FUJITSU Enterprise Postgres

SELECT CASE

 WHEN col1 = 1 THEN 'A'

 WHEN col1 = 2 THEN 'B'

 ...

 WHEN col1 = 78 THEN 'BZ'

 WHEN col1 IS NULL THEN 'UNKNOWN'

 ELSE 'OTHER'

 END

 FROM t1;

* col1 is assumed to be INTEGER type

Feature differences

Oracle database

Search value with a maximum of 127 items (up to 255 arguments in total) can be specified.

FUJITSU Enterprise Postgres

Search value with a maximum of 49 items (up to 100 arguments in total) only can be specified.

Conversion procedure

Convert to the CASE expression using the following procedure:

1. Specify the DECODE conversion target value expression (col1 in the first argument, in the example) and the search
value (1 in the second argument, in the example) for the CASE expression search condition. Specify the DECODE
result value ('A' in the third argument, in the example) for the CASE expression THEN (WHEN col1 = 1 THEN
'A', in the example). Note that if the search value is NULL, specify "IS NULL" for the search condition for the
CASE expression.

2. If the DECODE default value ('OTHER' in the last argument, in the example) is specified, specify the default value
for the CASE expression ELSE (ELSE 'OTHER', in the example).

B.2.3 Obtaining Comparison Result from Values with Different Data
Types

Oracle database

SELECT DECODE(col1,

 '1000', 'A',

 '2000', 1,

 'OTHER')

FROM t1;

* col1 is assumed to be CHAR(4) type

FUJITSU Enterprise Postgres

SELECT DECODE(col1,

 '1000', 'A',

 '2000', '1',

 'OTHER')

FROM t1;

* col1 is assumed to be CHAR(4) type

- 137 -

Feature differences

Oracle database

The data types of all result values are converted to the data type of the first result value.

FUJITSU Enterprise Postgres

Results in an error.

Conversion procedure

Convert using the following procedure:

1. Check the literal data type for the first result value specified.

2. Change the literals specified for each result value to the literal data type checked in the step 1.

B.3 SUBSTR (Extract a String of the Specified Length from
Another String)

Features

SUBSTR returns the number of characters specified in the third argument (starting from the position specified in the
second argument) from the string specified in the first argument.

Refer to "9.2.1 Notes on SUBSTR" for details on precautions when using SUBSTR.

B.3.1 Specifying a Value Expression with a Data Type Different from
the One that can be Specified for Function Arguments

Oracle database

SELECT SUBSTR(col1,

 1,

 col2)

 FROM DUAL;

* col1 and col2 are assumed to be CHAR type

FUJITSU Enterprise Postgres

CREATE CAST (CHAR AS INTEGER) WITH INOUT AS IMPLICIT;

SELECT SUBSTR(col1,

 1,

 col2)

 FROM DUAL;

No changes to SELECT statement;

* col1 and col2 are assumed to be CHAR type

Feature differences

Oracle database

If the type can be converted to a data type that can be specified for function arguments, conversion is performed
implicitly.

FUJITSU Enterprise Postgres

If the data types are different from each other, or if loss of significance occurs, implicit conversion is not performed.

- 138 -

Conversion procedure

Since the data type of the string length is clear, first execute the following CREATE CAST only once so that the CHAR
type value (col2 in the example) specified for the string length is implicitly converted to INTEGER type.

CREATE CAST (CHAR AS INTEGER) WITH INOUT AS IMPLICIT;

B.3.2 Extracting a String with the Specified Format from a Datetime
Type Value

Oracle database

SELECT SUBSTR(CURRENT_TIMESTAMP,

 1,

 8)

 FROM DUAL;

FUJITSU Enterprise Postgres

SELECT SUBSTR(TO_CHAR(CURRENT_TIMESTAMP,

 'DD-MON-YY HH.MI.SS.US PM')

 1,

 8)

 FROM DUAL;

Feature differences

Oracle database

A datetime value such as CURRENT_TIMESTAMP can be specified for character value expressions.

FUJITSU Enterprise Postgres

A datetime value such as CURRENT_TIMESTAMP cannot be specified for character value expressions.

Conversion procedure

First, specify TO_CHAR for the SUBSTR character value expression.
Specify datetime type (CURRENT_TIMESTAMP, in the example) in firstArg of TO_CHAR, and specify the format
template pattern ('DD-MON-YY HH.MI.SS.US PM', in the example) for secondArg to match with the result of SUBSTR
before conversion.

TO_CHAR specification format: TO_CHAR(firstArg, secondArg)

 Information

Refer to "Data Type Formatting Functions" in the PostgreSQL Documentation for information on format template patterns
that can be specified for TO_CHAR in FUJITSU Enterprise Postgres.

B.3.3 Concatenating a String Value with a NULL value

Oracle database

SELECT SUBSTR(col1 || col2,

 2,

 5)

 FROM t1;

* col1 and col2 are assumed to be character string type, and col2 may contain NULL

- 139 -

FUJITSU Enterprise Postgres

SELECT SUBSTR(col1 || NVL(col2, '')

 2,

 5)

 FROM t1;

* col1 and col2 are assumed to be character string type, and col2 may contain NULL

Feature differences

Oracle database

NULL is handled as an empty string, and strings are joined.

FUJITSU Enterprise Postgres

NULL is not handled as an empty string, and the result of joining the strings becomes NULL.

Conversion procedure

Convert using the following procedure:

1. Locate the places where the keyword "||" is used.

2. Check if any of the value expressions can contain NULL - if they can, then execute step 3.

3. Modify to NVL(valExpr,'').

B.4 NVL (Replace NULL)
Features

NVL converts NULL values.

B.4.1 Obtaining Result from Arguments with Different Data Types

Oracle database

SELECT NVL(col1,

 col2)

 FROM t1;

* col1 is assumed to be VARCHAR(100) type, and col2 is assumed to be CHAR(100) type

FUJITSU Enterprise Postgres

SELECT NVL(col1,

 CAST(col2 AS VARCHAR(100)))

 FROM t1;

* col1 is assumed to be VARCHAR(100) type, and col2 is assumed to be CHAR(100) type

Feature differences

Oracle database

Value expressions with different data types can be specified. If the first argument is a string value, then VARCHAR2
is returned, and if it is a numeric, then a numeric type with greater range is returned.

FUJITSU Enterprise Postgres

Value expressions with different data types cannot be specified.

- 140 -

Conversion procedure

Since the data types that can be specified for the expressions in the two arguments are unknown, use the following steps
to convert:

1. Check the data types specified for each of the two expressions.

2. Using the data type that is to be received as a result, explicitly convert the other argument with CAST.

B.4.2 Operating on Datetime/Numeric, Including Adding Number of
Days to a Particular Day

Oracle database

SELECT NVL(col1 + 10, CURRENT_DATE)

 FROM t1;

* col1 is assumed to be TIMESTAMP WITHOUT TIME ZONE type or TIMESTAMP WITH TIME ZONE type

FUJITSU Enterprise Postgres

SELECT NVL(CAST(col1 AS DATE) + 10, CURRENT_DATE)

 FROM t1;

* col1 is assumed to be TIMESTAMP WITHOUT TIME ZONE type or TIMESTAMP WITH TIME ZONE type

Feature differences

Oracle database

Numbers can be operated (added to or subtracted from) with either TIMESTAMP WITHOUT TIME ZONE type or
TIMESTAMP WITH TIME ZONE type. Operation result will be DATE type.

FUJITSU Enterprise Postgres

Numbers cannot be operated (added to or subtracted from) with neither TIMESTAMP WITHOUT TIME ZONE type
nor TIMESTAMP WITH TIME ZONE type. However, numbers can be operated (added to or subtracted from) with
DATE type.

Conversion procedure

Convert using the following procedure:

1. Search locations where the keyword "+" or "-" is used in addition or subtraction, and check if these operations are
between numbers and TIMESTAMP WITHOUT TIME ZONE type or TIMESTAMP WITH TIME ZONE type.

2. If they are, use CAST to explicitly convert TIMESTAMP WITHOUT TIME ZONE type or TIMESTAMP WITH
TIME ZONE type to DATE type.

B.4.3 Calculating INTERVAL Values, Including Adding Periods to a
Date

Oracle database

SELECT NVL(CURRENT_DATE + (col1 * 1.5), col2)

 FROM t1;

* col1 and col2 are assumed to be INTERVAL YEAR TO MONTH types

FUJITSU Enterprise Postgres

SELECT NVL(CURRENT_DATE +

 CAST(col1 * 1.5 AS

- 141 -

 INTERVAL YEAR TO MONTH), col2)

 FROM t1;

* col1 and col2 are assumed to be INTERVAL YEAR TO MONTH types

Feature differences

Oracle database

INTERVAL YEAR TO MONTH type multiplication and division result in INTERVAL YEAR TO MONTH type and
any fraction (number of days) will be truncated.

FUJITSU Enterprise Postgres

INTERVAL YEAR TO MONTH type multiplication and division result in INTERVAL type and fractions (number
of days) will not be truncated.

Conversion procedure

Convert using the following procedure:

1. Search locations where the keywords "*" or "/" are used in multiplication or division, and check if the specified
value is INTERVAL YEAR TO MONTH type.

2. If the value is INTERVAL YEAR TO MONTH type, use CAST to explicitly convert the operation result to
INTERVAL YEAR TO MONTH type.

B.5 DBMS_OUTPUT (Output Messages)
Features

DBMS_OUTPUT sends messages to clients such as psql from PL/pgSQL.

B.5.1 Outputting Messages Such As Process Progress Status

Oracle database

set serveroutput on;...(1)

DECLARE

 v_col1 CHAR(20);

 v_col2 INTEGER;

 CURSOR c1 IS

 SELECT col1, col2 FROM t1;

BEGIN

 DBMS_OUTPUT.PUT_LINE('-- BATCH_001 Start --');

 OPEN c1;

 DBMS_OUTPUT.PUT_LINE('-- LOOP Start --');

 LOOP

 FETCH c1 INTO v_col1, v_col2;

 EXIT WHEN c1%NOTFOUND;

 DBMS_OUTPUT.PUT('.');

 END LOOP;

 DBMS_OUTPUT.NEW_LINE; ...(2)

 DBMS_OUTPUT.PUT_LINE('-- LOOP End --');

 CLOSE c1;

 DBMS_OUTPUT.PUT_LINE('-- BATCH_001 End --');

EXCEPTION

 WHEN OTHERS THEN

 DBMS_OUTPUT.PUT_LINE('-- SQL Error --');

 DBMS_OUTPUT.PUT_LINE('ERROR : ' || SQLERRM);

- 142 -

END;

/

FUJITSU Enterprise Postgres

DO $$

DECLARE

 v_col1 CHAR(20);

 v_col2 INTEGER;

 c1 CURSOR FOR

 SELECT col1, col2 FROM t1;

BEGIN

 PERFORM DBMS_OUTPUT.SERVEROUTPUT(TRUE); ...(1)

 PERFORM DBMS_OUTPUT.ENABLE(NULL); ...(1)

 PERFORM DBMS_OUTPUT.PUT_LINE('-- BATCH_001 Start --');

 OPEN c1;

 PERFORM DBMS_OUTPUT.PUT_LINE('-- LOOP Start --');

 LOOP

 FETCH c1 INTO v_col1, v_col2;

 EXIT WHEN FOUND = false;

 PERFORM DBMS_OUTPUT.PUT('.');

 END LOOP;

 PERFORM DBMS_OUTPUT.NEW_LINE(); ...(2)

 PERFORM DBMS_OUTPUT.PUT_LINE('-- LOOP End --');

 CLOSE c1;

 PERFORM DBMS_OUTPUT.PUT_LINE('-- BATCH_001 End --');

EXCEPTION

 WHEN OTHERS THEN

 PERFORM DBMS_OUTPUT.PUT_LINE('-- SQL Error --');

 PERFORM DBMS_OUTPUT.PUT_LINE('ERROR : ' || SQLERRM);

END;

$$

;

(1) SERVEROUTPUT/ENABLE

Specification differences

Oracle database

Use SET statement and specify SERVEROUTPUT ON.

FUJITSU Enterprise Postgres

Specify DBMS_SQL.SERVEROUTPUT(TRUE).

Conversion procedure

Convert using the following procedure:

1. Check if a SET SERVEROUTPUT statement is specified before the PL/SQL block of a stored procedure.

2. If a SET SERVEROUTPUT statement is specified, specify DBMS_SQL.SERVEROUTPUT straight after BEGIN
of PL/pgSQL. If ON is specified to have messages output to a window, then specify TRUE. If OFF is specified, then
specify FALSE.

3. Specify DBMS_SQL.ENABLE only if SET SERVEROUTPUT is ON. The values to be specified for the argument
are as follows:

- If SIZE is specified for the SET SERVEROUTPUT statement, specify this size for the argument.

- 143 -

- If SIZE is not specified for the SET SERVEROUTPUT statement, then specify 2000 for Oracle10.1g or earlier,
NULL for Oracle10.2g or later.

If DBMS_SQL.ENABLE is specified for the PL/SQL block of the stored procedure, specify the same value as that
argument.

(2) NEW_LINE

Specification differences

Oracle database

If there is no argument for packageName.featureName, parenthesis can be omitted.

FUJITSU Enterprise Postgres

Even if there is no argument for packageName.featureName, parenthesis cannot be omitted.

Conversion procedure

Convert using the following procedure:

1. Locate the places where the keyword "DBMS_OUTPUT.NEW_LINE" is used in the stored procedure.

2. If there is no parenthesis after packageName.featureName, add the parenthesis.

B.5.2 Receiving a Return Value from a Procedure (PL/SQL) Block
(For GET_LINES)

Oracle database

set serveroutput off;

DECLARE

 v_num INTEGER;

BEGIN

 DBMS_OUTPUT.DISABLE; ...(3)

 DBMS_OUTPUT.ENABLE(20000); ...(4)

 DBMS_OUTPUT.PUT_LINE('-- ITEM CHECK --');

 SELECT count(*) INTO v_num FROM t1;

 IF v_num = 0 THEN

 DBMS_OUTPUT.PUT_LINE('-- NO ITEM --');

 ELSE

 DBMS_OUTPUT.PUT_LINE('-- IN ITEM(' || v_num || ') --');

 END IF;

END;

/

set serveroutput on;

DECLARE

 v_buffs DBMSOUTPUT_LINESARRAY; ...(5)

 v_num INTEGER := 10;

BEGIN

 DBMS_OUTPUT.GET_LINES(v_buffs, v_num); ...(5)

 FOR i IN 1..v_num LOOP

 DBMS_OUTPUT.PUT_LINE('LOG : ' || v_buffs(i)); ...(5)

- 144 -

 END LOOP;

END;

/

FUJITSU Enterprise Postgres

DO $$

DECLARE

 v_num INTEGER;

BEGIN

 PERFORM DBMS_OUTPUT.SERVEROUTPUT(FALSE);

 PERFORM DBMS_OUTPUT.DISABLE(); ...(3)

 PERFORM DBMS_OUTPUT.ENABLE(20000); ...(4)

PERFORM DBMS_OUTPUT.PUT_LINE('-- ITEM CHECK --');

 SELECT count(*) INTO v_num FROM t1;

 IF v_num = 0 THEN

 PERFORM DBMS_OUTPUT.PUT_LINE('-- NO ITEM --');

 ELSE

 PERFORM DBMS_OUTPUT.PUT_LINE('-- IN ITEM(' || v_num || ') --');

 END IF;

END;

$$

;

DO $$

DECLARE

 v_buffs VARCHAR[]; ...(5)

 v_num INTEGER := 10;

BEGIN

 PERFORM DBMS_OUTPUT.SERVEROUTPUT(TRUE);

 SELECT lines, numlines INTO v_buffs, v_num FROM DBMS_OUTPUT.GET_LINES(v_num); ...(5)

 FOR i IN 1..v_num LOOP

 PERFORM DBMS_OUTPUT.PUT_LINE('LOG : ' || v_buffs[i]); ...(5)

 END LOOP;

END;

$$

;

(3) DISABLE

Same as the NEW_LINE in the DBMS_OUTPUT package. Refer to NEW_LINE for information on specification
differences and conversion procedures associated with specification differences.

(4) ENABLE

Same as NEW_LINE in the DBMS_OUTPUT package. Refer to NEW_LINE for information on specification
differences and conversion procedures associated with specification differences.

(5) GET_LINES

Specification format for Oracle database

DBMS_OUTPUT.GET_LINES(firstArg, secondArg)

Specification differences

Oracle database

Obtained values are received with variables specified for arguments.

- 145 -

FUJITSU Enterprise Postgres

Since obtained values are the search results for DBMS_OUTPUT.GET_LINES, they are received with variables
specified for the INTO clause of the SELECT statement.

Conversion procedure

Convert using the following procedure:

1. Locate the places where the keyword "DBMS_OUTPUT.GET_LINES" is used in the stored procedure.

2. Change the data type (DBMSOUTPUT_LINESARRAY in the example) of the variable (v_buffs in the example)
specified as firstArg of DBMS_OUTPUT.GET_LINES into a VARCHAR type array (VARCHAR[] in the
example).

3. Replace the DBMS_OUTPUT.GET_LINES location called with a SELECT INTO statement.

- Use the literal "lines, numlines" in the select list.

- Specify firstArg (v_buffs in the example) and secondArg (v_num in the example) configured in
DBMS_OUTPUT.GET_LINES, in the INTO clause.

- Use DBMS_OUTPUT.GET_LINES in the FROM clause. Specify only secondArg (v_num in the example)
before modification.

4. Identify the location that references firstArg (v_buffs in the example), and change it to the PL/pgSQL array
reference format (v_buffs[i] in the example).

B.5.3 Receiving a Return Value from a Procedure (PL/SQL) Block
(For GET_LINE)

Oracle database

set serveroutput on;

DECLARE

 v_buff1 VARCHAR2(100);

 v_buff2 VARCHAR2(1000);

 v_num INTEGER;

BEGIN

 v_buff2 := '';

 LOOP

 DBMS_OUTPUT.GET_LINE(v_buff1, v_num); ...(6)

 EXIT WHEN v_num = 1;

 v_buff2 := v_buff2 || v_buff1;

 END LOOP;

 DBMS_OUTPUT.PUT_LINE(v_buff2);

END;

/

* Only the process to obtain a value is stated

FUJITSU Enterprise Postgres

DO $$

DECLARE

 v_buff1 VARCHAR(100);

 v_buff2 VARCHAR(1000);

 v_num INTEGER;

BEGIN

 PERFORM DBMS_OUTPUT.SERVEROUTPUT(TRUE);

 v_buff2 := '';

 LOOP

- 146 -

 SELECT line, status INTO v_buff1, v_num FROM DBMS_OUTPUT.GET_LINE(); ...(6)

 EXIT WHEN v_num = 1;

 v_buff2 := v_buff2 || v_buff1;

 END LOOP;

 PERFORM DBMS_OUTPUT.PUT_LINE(v_buff2);

END;

$$

;

* Only the process to obtain a value is stated

(6) GET_LINE

Specification format for Oracle database

DBMS_OUTPUT.GET_LINE(firstArg, secondArg)

Specification differences

Oracle database

Obtained values are received with variables specified for arguments.

FUJITSU Enterprise Postgres

Since obtained values are the search results for DBMS_OUTPUT.GET_LINES, they are received with variables
specified for the INTO clause of the SELECT statement.

Conversion procedure

Convert using the following procedure:

1. Locate the places where the keyword "DBMS_OUTPUT.GET_LINE" is used in the stored procedure.

2. Replace the DBMS_OUTPUT.GET_LINE location called with a SELECT INTO statement.

- Use the literal "line, status" in the select list.

- Specify firstArg (v_buff1 in the example) and secondArg (v_num in the example) configured in
DBMS_OUTPUT.GET_LINE, in the INTO clause.

- Use DBMS_OUTPUT.GET_LINE in the FROM clause. Although arguments are not specified, parenthesis
must be specified.

B.6 UTL_FILE (Perform File Operation)
Features

UTL_FILE reads and writes text files from PL/pgSQL.

B.6.1 Registering a Directory to Load and Write Text Files

Oracle database

[Oracle9i or earlier]

Configure the following with initialization parameter

 UTL_FILE_DIR='/home/fsep' ...(1)

[Oracle9.2i or later]

 Configure the following with CREATE DIRECTORY statement

 CREATE DIRECTORY DIR AS '/home/fsep'; ...(1)

- 147 -

FUJITSU Enterprise Postgres

INSERT INTO UTL_FILE.UTL_FILE_DIR(dir)

 VALUES('/home/fsep'); ...(1)

(1) UTL_FILE_DIR/CREATE DIRECTORY

Feature differences

Oracle database

Configure the directory to be operated, using the CREATE DIRECTORY statement or the initialization parameter
UTL_FILE_DIR.

FUJITSU Enterprise Postgres

The directory to be operated cannot be configured using the CREATE DIRECTORY statement or the initialization
parameter UTL_FILE_DIR.

Conversion procedure

Configure the target directory information in the UTL_FILE.UTL_FILE_DIR table using the INSERT statement. Note
that this conversion procedure should be performed only once before executing the PL/pgSQL function.

- When using the initialization parameter UTL_FILE_DIR:

1. Check the initialization parameter UTL_FILE_DIR value ('/home/fsep' in the example).

2. Using the INSERT statement, specify and execute the directory name checked in step 1.
- Specify UTL_FILE.UTL_FILE_DIR(dir) for the INTO clause.
- Using the character string literal ('/home/fsep' in the example), specify the target directory name for the
VALUES clause.
- If multiple directories are specified, execute the INSERT statement for each directory.

- When using the CREATE DIRECTORY statement:

1. Check the directory name ('/home/fsep' in the example) registered with the CREATE DIRECTORY statement.
To check, log in SQL*Plus as a user with DBA privileges, and execute "show ALL_DIRECTORIES;".

2. Using the INSERT statement, specify and execute the directory name checked in step 1. Same steps are used
to specify the INSERT statement as when using the initialization parameter UTL_FILE_DIR.

B.6.2 Checking File Information

Oracle database

CREATE PROCEDURE read_file(fname VARCHAR2) AS

 v_file UTL_FILE.FILE_TYPE;

 v_exists BOOLEAN;

 v_length NUMBER;

 v_bsize INTEGER;

 v_rbuff VARCHAR2(1024);

BEGIN

 UTL_FILE.FGETATTR('DIR', fname, v_exists, v_length, v_bsize); ...(2)

 IF v_exists <> true THEN

 DBMS_OUTPUT.PUT_LINE('-- FILE NOT FOUND --');

 RETURN;

 END IF;

- 148 -

 DBMS_OUTPUT.PUT_LINE('-- FILE DATA --');

 v_file := UTL_FILE.FOPEN('DIR', fname, 'r', 1024); ...(3)

 FOR i IN 1..3 LOOP

 UTL_FILE.GET_LINE(v_file, v_rbuff, 1024); ...(4)

 DBMS_OUTPUT.PUT_LINE(v_rbuff);

 END LOOP;

 DBMS_OUTPUT.PUT_LINE('... more');

 DBMS_OUTPUT.PUT_LINE('-- READ END --');

 UTL_FILE.FCLOSE(v_file); ...(5)

 RETURN;

EXCEPTION

 WHEN NO_DATA_FOUND THEN

 DBMS_OUTPUT.PUT_LINE('-- FILE END --');

 UTL_FILE.FCLOSE(v_file);

 RETURN;

 WHEN OTHERS THEN

 DBMS_OUTPUT.PUT_LINE('-- SQL Error --');

 DBMS_OUTPUT.PUT_LINE('ERROR : ' || SQLERRM);

 UTL_FILE.FCLOSE_ALL; ...(6)

 RETURN;

END;

/

set serveroutput on

call read_file('file01.txt');

FUJITSU Enterprise Postgres

CREATE FUNCTION read_file(fname VARCHAR) RETURNS void AS $$

DECLARE

 v_file UTL_FILE.FILE_TYPE;

 v_exists BOOLEAN;

 v_length NUMERIC;

 v_bsize INTEGER;

 v_rbuff VARCHAR(1024);

BEGIN

 PERFORM DBMS_OUTPUT.SERVEROUTPUT(TRUE);

 SELECT fexists, file_length, blocksize

 INTO v_exists, v_length, v_bsize

 FROM UTL_FILE.FGETATTR('/home/fsep', fname); ...(2)

 IF v_exists <> true THEN

 PERFORM DBMS_OUTPUT.PUT_LINE('-- FILE NOT FOUND --');

 RETURN;

 END IF;

 PERFORM DBMS_OUTPUT.PUT_LINE('-- FILE DATA --');

 v_file := UTL_FILE.FOPEN('/home/fsep', fname, 'w', 1024); ...(3)

 FOR i IN 1..3 LOOP

 v_rbuff := UTL_FILE.GET_LINE(v_file, 1024); ...(4)

 PERFORM DBMS_OUTPUT.PUT_LINE(v_rbuff);

 END LOOP;

 PERFORM DBMS_OUTPUT.PUT_LINE('... more');

 PERFORM DBMS_OUTPUT.PUT_LINE('-- READ END --');

 v_file := UTL_FILE.FCLOSE(v_file); ...(5)

- 149 -

 RETURN;

EXCEPTION

 WHEN NO_DATA_FOUND THEN

 PERFORM DBMS_OUTPUT.PUT_LINE('-- FILE END --');

 v_file := UTL_FILE.FCLOSE(v_file);

 RETURN;

 WHEN OTHERS THEN

 PERFORM DBMS_OUTPUT.PUT_LINE('-- SQL Error --');

 PERFORM DBMS_OUTPUT.PUT_LINE('ERROR : ' || SQLERRM);

 PERFORM UTL_FILE.FCLOSE_ALL(); ...(6)

 RETURN;

END;

$$

LANGUAGE plpgsql;

SELECT read_file('file01.txt');

(2) FGETATTR

Specification format for Oracle database

UTL_FILE.FGETATTR(firstArg, secondArg, thirdArg, fourthArg, fifthArg)

Feature differences

Oracle database

If using a CREATE DIRECTORY statement (Oracle9.2i or later), specify a directory object name for the directory
name.

FUJITSU Enterprise Postgres

A directory object name cannot be specified for the directory name.

Specification differences

Oracle database

Obtained values are received with variables specified for arguments.

FUJITSU Enterprise Postgres

Since obtained values are the search results for UTL_FILE.FGETATTR, they are received with variables specified
for the INTO clause of the SELECT statement.

Conversion procedure

Convert using the following procedure. Refer to UTL_FILE_DIR/CREATE DIRECTORY for information on how to
check if the directory object name corresponds to the actual directory name.

1. Locate the places where the keyword "UTL_FILE.FOPEN" is used in the stored procedure.

2. Check the actual directory name ('/home/fsep' in the example) that corresponds to the directory object name ('DIR'
in the example).

3. Replace the directory object name ('DIR' in the example) in firstArg with the actual directory name ('/home/fsep'
in the example) verified in step 2.

4. Replace the UTL_FILE.FGETATTR location called with a SELECT INTO statement.

- Use the literal "fexists, file_length, blocksize" in the select list.

- Specify thirdArg, fourthArg, and fifthArg (v_exists, v_length, v_bsize, in the example) specified for
UTL_FILE.FGETATTR to the INTO clause in the same order as that of the arguments.

- Use UTL_FILE.FGETATTR in the FROM clause. Specify only the actual directory name for firstArg ('/home/
fsep' in the example) and secondArg (fname in the example) before modification for the arguments.

- 150 -

(3) FOPEN

Specification format for Oracle

UTL_FILE.FOPEN(firstArg, secondArg, thirdArg, fourthArg, fifthArg)

Feature differences

Oracle database

If using a CREATE DIRECTORY statement (Oracle9.2i or later), specify a directory object name for the directory
name.

FUJITSU Enterprise Postgres

A directory object name cannot be specified for the directory name.

Conversion procedure

Convert using the following procedure. Refer to UTL_FILE_DIR/CREATE DIRECTORY for information on how to
check if the directory object name corresponds to the actual directory name.

1. Locate the places where the keyword "UTL_FILE.FOPEN" is used in the stored procedure.

2. Check the actual directory name ('/home/fsep' in the example) that corresponds to the directory object name ('DIR'
in the example).

3. Replace the directory object name ('DIR' in the example) in firstArg with the actual directory name ('/home/fsep'
in the example) checked in step 1.

(4) GET_LINE

Specification format for Oracle database

UTL_FILE.GET_LINE(firstArg, secondArg, thirdArg, fourthArg)

Specification differences

Oracle database

Obtained values are received with variables specified for arguments.

FUJITSU Enterprise Postgres

Since obtained values are the returned value of UTL_FILE.GET_LINE, they are received with variables specified for
substitution statement.

Conversion procedure

Convert using the following procedure:

1. Locate the places where the keyword "UTL_FILE.GET_LINE" is used in the stored procedure.

2. Replace the UTL_FILE.GET_LINE location called with a value assignment (:=).

- On the left-hand side, specify secondArg (v_rbuff in the example) specified for UTL_FILE.GET_LINE.

- Use UTL_FILE.GET_LINE in the right-hand side. Specify only firstArg (v_file in the example) and thirdArg
(1024 in the example) before modification.

(5) FCLOSE

Specification format for Oracle database

UTL_FILE.FCLOSE(firstArg)

Specification differences

Oracle database

After closing, the file handler specified for the argument becomes NULL.

- 151 -

FUJITSU Enterprise Postgres

After closing, set the file handler to NULL by assigning the return value of UTL_FILE.FCLOSE to it.

Conversion procedure

Convert using the following procedure:

1. Locate the places where the keyword "UTL_FILE.FCLOSE" is used in the stored procedure.

2. Replace the UTL_FILE.FCLOSE location called with a value assignment (:=) so that the file handler (v_file in the
example) becomes NULL.

- On the left-hand side, specify the argument (v_file in the example) specified for UTL_FILE.FCLOSE.

- Use UTL_FILE.FCLOSE in the right-hand side. For the argument, specify the same value (v_file in the
example) as before modification.

(6) FCLOSE_ALL

Same as NEW_LINE in the DBMS_OUTPUT package. Refer to NEW_LINE in the DBMS_OUTPUT for information
on specification differences and conversion procedures associated with specification differences.

B.6.3 Copying Files

Oracle database

CREATE PROCEDURE copy_file(fromname VARCHAR2, toname VARCHAR2) AS

BEGIN

 UTL_FILE.FCOPY('DIR1', fromname, 'DIR2', toname, 1, NULL); ...(7)

 RETURN;

EXCEPTION

 WHEN OTHERS THEN

 DBMS_OUTPUT.PUT_LINE('-- SQL Error --');

 DBMS_OUTPUT.PUT_LINE('ERROR : ' || SQLERRM);

 RETURN;

END;

/

set serveroutput on

call copy_file('file01.txt','file01_bk.txt');

FUJITSU Enterprise Postgres

CREATE FUNCTION copy_file(fromname VARCHAR, toname VARCHAR) RETURNS void AS $$

BEGIN

 PERFORM DBMS_OUTPUT.SERVEROUTPUT(TRUE);

 PERFORM UTL_FILE.FCOPY('/home/fsep', fromname, '/home/backup', toname, 1, NULL); ...(7)

 RETURN;

EXCEPTION

 WHEN OTHERS THEN

 PERFORM DBMS_OUTPUT.PUT_LINE('-- SQL Error --');

 PERFORM DBMS_OUTPUT.PUT_LINE('ERROR : ' || SQLERRM);

 RETURN;

END;

- 152 -

$$

LANGUAGE plpgsql;

SELECT copy_file('file01.txt','file01_bk.txt');

(7) FCOPY

Specification format for Oracle database

UTL_FILE.FCOPY(firstArg, secondArg, thirdArg, fourthArg, fifthArg, sixthArg)

Feature differences

Oracle database

If using a CREATE DIRECTORY statement (Oracle9.2i or later), specify a directory object name for the directory
name.

FUJITSU Enterprise Postgres

A directory object name cannot be specified for the directory name.

Conversion procedure

Convert using the following procedure. Refer to UTL_FILE_DIR/CREATE DIRECTORY for information on how to
check if the directory object name corresponds to the actual directory name.

1. Locate the places where the keyword "UTL_FILE.FCOPY" is used in the stored procedure.

2. Check the actual directory names ('/home/fsep' and '/home/backup', in the example) that correspond to the directory
object names ('DIR1' and 'DIR2', in the example) of firstArg and thirdArg argument.

3. Replace the directory object name ('DIR1' and 'DIR2', in the example) with the actual directory names ('/home/fsep'
in the example) checked in step 1.

B.6.4 Moving/Renaming Files

Oracle database

CREATE PROCEDURE move_file(fromname VARCHAR2, toname VARCHAR2) AS

BEGIN

 UTL_FILE.FRENAME('DIR1', fromname, 'DIR2', toname, FALSE); ...(8)

 RETURN;

EXCEPTION

 WHEN OTHERS THEN

 DBMS_OUTPUT.PUT_LINE('-- SQL Error --');

 DBMS_OUTPUT.PUT_LINE('ERROR : ' || SQLERRM);

 RETURN;

END;

/

set serveroutput on

call move_file('file01.txt','file02.txt');

FUJITSU Enterprise Postgres

CREATE FUNCTION move_file(fromname VARCHAR, toname VARCHAR) RETURNS void AS $$

BEGIN

 PERFORM DBMS_OUTPUT.SERVEROUTPUT(TRUE);

- 153 -

 PERFORM UTL_FILE.FRENAME('/home/fsep', fromname, '/home/backup', toname, FALSE); ...(8)

 RETURN;

EXCEPTION

 WHEN OTHERS THEN

 PERFORM DBMS_OUTPUT.PUT_LINE('-- SQL Error --');

 PERFORM DBMS_OUTPUT.PUT_LINE('ERROR : ' || SQLERRM);

 RETURN;

END;

$$

LANGUAGE plpgsql;

SELECT move_file('file01.txt','file02.txt');

(8) FRENAME

Same as FCOPY for the UTL_FILE package. Refer to FCOPY in the UTL_FILE package for information on specification
differences and conversion procedures associated with specification differences.

B.7 DBMS_SQL (Execute Dynamic SQL)
Features

For DBMS_SQL, dynamic SQL can be executed from PL/pgSQL.

B.7.1 Searching Using a Cursor

Oracle database

CREATE PROCEDURE search_test(h_where CLOB) AS

 str_sql CLOB;

 v_cnt INTEGER;

 v_array DBMS_SQL.VARCHAR2A;

 v_cur INTEGER;

 v_smpid INTEGER;

 v_smpnm VARCHAR2(20);

 v_addbuff VARCHAR2(20);

 v_smpage INTEGER;

 errcd INTEGER;

 length INTEGER;

 ret INTEGER;

BEGIN

 str_sql := 'SELECT smpid, smpnm FROM smp_tbl WHERE ' || h_where || ' ORDER BY smpid';

 v_smpid := 0;

 v_smpnm := '';

 v_smpage := 0;

 v_cur := DBMS_SQL.OPEN_CURSOR; ...(1)

 v_cnt :=

 CEIL(DBMS_LOB.GETLENGTH(str_sql)/1000);

 FOR idx IN 1 .. v_cnt LOOP

 v_array(idx) :=

 DBMS_LOB.SUBSTR(str_sql,

 1000,

 (idx-1)*1000+1);

- 154 -

 END LOOP;

 DBMS_SQL.PARSE(v_cur, v_array, 1, v_cnt, FALSE, DBMS_SQL.NATIVE); ...(2)

 DBMS_SQL.DEFINE_COLUMN(v_cur, 1, v_smpid);

 DBMS_SQL.DEFINE_COLUMN(v_cur, 2, v_smpnm, 10);

 ret := DBMS_SQL.EXECUTE(v_cur);

 LOOP

 v_addbuff := '';

 IF DBMS_SQL.FETCH_ROWS(v_cur) = 0 THEN

 EXIT;

 END IF;

 DBMS_OUTPUT.PUT_LINE('--');

 DBMS_SQL.COLUMN_VALUE(v_cur, 1, v_smpid, errcd, length); ...(3)

 IF errcd = 1405 THEN ...(3)

 DBMS_OUTPUT.PUT_LINE('smpid = (NULL)');

 ELSE

 DBMS_OUTPUT.PUT_LINE('smpid = ' || v_smpid);

 END IF;

 DBMS_SQL.COLUMN_VALUE(v_cur, 2, v_smpnm, errcd, length);

 IF errcd = 1406 THEN

 v_addbuff := '... [len=' || length || ']';

 END IF;

 IF errcd = 1405 THEN

 DBMS_OUTPUT.PUT_LINE('v_smpnm = (NULL)');

 ELSE

 DBMS_OUTPUT.PUT_LINE('v_smpnm = ' || v_smpnm || v_addbuff);

 END IF;

DBMS_OUTPUT.PUT_LINE('--');

 DBMS_OUTPUT.NEW_LINE;

 END LOOP;

 DBMS_SQL.CLOSE_CURSOR(v_cur); ...(4)

 RETURN;

END;

/

Set serveroutput on

call search_test('smpid < 100');

FUJITSU Enterprise Postgres

CREATE FUNCTION search_test(h_where text) RETURNS void AS $$

DECLARE

 str_sql text;

 v_cur INTEGER;

- 155 -

 v_smpid INTEGER;

 v_smpnm VARCHAR(20);

 v_addbuff VARCHAR(20);

 v_smpage INTEGER;

 errcd INTEGER;

 length INTEGER;

 ret INTEGER;

BEGIN

 PERFORM DBMS_OUTPUT.SERVEROUTPUT(TRUE);

 str_sql := 'SELECT smpid, smpnm FROM smp_tbl WHERE ' || h_where || ' ORDER BY smpid';

 v_smpid := 0;

 v_smpnm := '';

 v_smpage := 0;

 v_cur := DBMS_SQL.OPEN_CURSOR(); ...(1)

 PERFORM DBMS_SQL.PARSE(v_cur, str_sql, 1); ...(2)

 PERFORM DBMS_SQL.DEFINE_COLUMN(v_cur, 1, v_smpid);

 PERFORM DBMS_SQL.DEFINE_COLUMN(v_cur, 2, v_smpnm, 10);

 ret := DBMS_SQL.EXECUTE(v_cur);

 LOOP

 v_addbuff := '';

 IF DBMS_SQL.FETCH_ROWS(v_cur) = 0 THEN

 EXIT;

 END IF;

 PERFORM

DBMS_OUTPUT.PUT_LINE('--');

 SELECT value,column_error,actual_length

 INTO v_smpid, errcd, length

 FROM DBMS_SQL.COLUMN_VALUE(v_cur,

 1,

 v_smpid); ...(3)

 IF errcd = 22002 THEN ...(3)

 PERFORM DBMS_OUTPUT.PUT_LINE('smpid = (NULL)');

 ELSE

 PERFORM DBMS_OUTPUT.PUT_LINE('smpid = ' || v_smpid);

 END IF;

 SELECT value,column_error,actual_length INTO v_smpnm, errcd, length FROM

DBMS_SQL.COLUMN_VALUE(v_cur, 2, v_smpnm);

 IF errcd = 22001 THEN

 v_addbuff := '... [len=' || length || ']';

 END IF;

 IF errcd = 22002 THEN

 PERFORM DBMS_OUTPUT.PUT_LINE('v_smpnm = (NULL)');

 ELSE

 PERFORM DBMS_OUTPUT.PUT_LINE('v_smpnm = ' || v_smpnm || v_addbuff);

 END IF;

 PERFORM

DBMS_OUTPUT.PUT_LINE('--');

 PERFORM DBMS_OUTPUT.NEW_LINE();

 END LOOP;

 v_cur := DBMS_SQL.CLOSE_CURSOR(v_cur); ...(4)

 RETURN;

END;

$$

LANGUAGE plpgsql;

- 156 -

SELECT search_test('smpid < 100');

(1) OPEN_CURSOR

Same as NEW_LINE in the DBMS_OUTPUT package. Refer to NEW_LINE in the DBMS_OUTPUT package for
information on specification differences and conversion procedures associated with specification differences.

(2) PARSE

Specification format for Oracle database

DBMS_SQL.PARSE(firstArg, secondArg, thirdArg, fourthArg, fifthArg)

Feature differences

Oracle database

SQL statements can be specified with string table types (VARCHAR2A type, VARCHAR2S type). Specify this for
secondArg.

DBMS_SQL.NATIVE, DBMS_SQL.V6, DBMS_SQL.V7 can be specified for processing SQL statements.

FUJITSU Enterprise Postgres

SQL statements cannot be specified with string table types.

DBMS_SQL.NATIVE, DBMS_SQL.V6, DBMS_SQL.V7 cannot be specified for processing SQL statements.

Conversion procedure

Convert using the following procedure:

1. Locate the places where the keyword "DBMS_SQL.PARSE" is used in the stored procedure.

2. Check the data type of the SQL statement specified for secondArg (v_array in the example).

- If the data type is either DBMS_SQL.VARCHAR2A type or DBMS_SQL.VARCHAR2S type, then it is a
table type specification. Execute step 3 and continue the conversion process.

- If the data type is neither DBMS_SQL.VARCHAR2A type nor DBMS_SQL.VARCHAR2S type, then it is a
string specification. Execute step 7 and continue the conversion process.

3. Check the SQL statement (str_sql in the example) before it was divided into DBMS_SQL.VARCHAR2A type and
DBMS_SQL.VARCHAR2S type.

4. Delete the sequence of the processes (processes near FOR idx in the example) where SQL is divided into
DBMS_SQL.VARCHAR2A type and DBMS_SQL.VARCHAR2S type.

5. Replace secondArg with the SQL statement (str_sql in the example) before it is divided, that was checked in step
2.

6. Delete thirdArg, fourthArg, and fifthArg (v_cnt, FALSE, DBMS_SQL.NATIVE, in the example).

7. If DBMS_SQL.NATIVE, DBMS_SQL.V6, and DBMS_SQL.V7 are specified, then replace thirdArg with a
numeric literal 1.

- If either DBMS_SQL.VARCHAR2A type or DBMS_SQL.VARCHAR2S type is used, then sixthArg
becomes relevant.

- If neither DBMS_SQL.VARCHAR2A type nor DBMS_SQL.VARCHAR2S type is used, then thirdArg
becomes relevant.

(3) COLUMN_VALUE

Specification format for Oracle database

DBMS_SQL.COLUMN_VALUE(firstArg, secondArg, thirdArg, fourthArg, fifthArg)

- 157 -

Feature differences

Oracle database

The following error codes are returned for column_error.

- 1406: fetched column value was truncated

- 1405: fetched column value is NULL

FUJITSU Enterprise Postgres

The following error codes are returned for column_error.

- 22001: string_data_right_truncation

- 22002: null_value_no_indicator_parameter

Specification differences

Oracle database

Obtained values are received with variables specified for arguments.

FUJITSU Enterprise Postgres

Since obtained values are the search results for DBMS_SQL.COLUMN_VALUE, they are received with variables
specified for the INTO clause of the SELECT statement.

Conversion procedure

Convert using the following procedure:

1. Locate the places where the keyword "DBMS_SQL.COLUMN_VALUE" is used in the stored procedure.

2. Replace the DBMS_SQL.COLUMN_VALUE location called with a SELECT INTO statement.

- Check the number of arguments (v_smpid, errcd, and length in the example) specified after secondArg (1 in
the example) of DBMS_SQL.COLUMN_VALUE.

- Specify "value", "column_error", and "actual_length" in the select list, according to the number of arguments
checked in the previous step (for example, if only thirdArg is specified, then specify "value" only.)

- Specify thirdArg, fourthArg, and fifthArg (v_smpid, errcd, length in the example) configured for
DBMS_SQL.COLUMN_VALUE, for the INTO clause.

- Use DBMS_SQL.COLUMN_VALUE in the FROM clause. Specify firstArg, secondArg, and thirdArg
(v_cur, 1, v_smpid, in the example) before modification.

3. If the fourthArg (column_error value in the example) is used, then check the location of the target variable (errcd
in the example).

4. If a decision process is performed in the location checked, then modify the values used in the decision process as
below:

- 1406 to 22001

- 1405 to 22002

(4) CLOSE_CURSOR

Specification format for Oracle database

DBMS_SQL.CLOSE_CURSOR(firstArg)

Specification differences

Oracle database

After closing, the cursor specified in firstArg becomes NULL.

- 158 -

FUJITSU Enterprise Postgres

After closing, set the cursor to NULL by assigning the return value of DBMS_SQL.CLOSE_CURSOR to it.

Conversion procedure

Convert using the following procedure:

1. Locate the places where the keyword "DBMS_SQL.CLOSE_CURSOR" is used in the stored procedure.

2. Set the cursor to NULL by assigning (:=) the return value of DBMS_SQL.CLOSE_CURSOR to it.

- On the left-hand side, specify the argument (v_cur in the example) specified for
DBMS_SQL.CLOSE_CURSOR.

- Use DBMS_SQL.CLOSE_CURSOR in the right-hand side. For the argument, specify the same value (v_cur
in the example) as before modification.

- 159 -

Appendix C Tables Used by the Features
Compatible with Oracle Databases

This chapter describes the tables used by the features compatible with Oracle databases.

C.1 UTL_FILE.UTL_FILE_DIR
Register the directory handled by the UTL_FILE package in the UTL_FILE.UTL_FILE_DIR table.

Name Type Description

dir text Name of the directory handled by the UTL_FILE package

- 160 -

Appendix D ECOBPG - Embedded SQL in COBOL
This appendix describes application development using embedded SQL in COBOL.

D.1 Precautions when Using Functions and Operators
An embedded SQL program consists of code written in an ordinary programming language, in this case COBOL, mixed with
SQL commands in specially marked sections. To build the program, the source code (*.pco) is first passed through the
embedded SQL preprocessor, which converts it to an ordinary COBOL program (*.cob), and afterwards it can be processed
by a COBOL compiler. (For details about the compiling and linking see "D.9 Processing Embedded SQL Programs".)
Converted ECOBPG applications call functions in the libpq library through the embedded SQL library (ecpglib), and
communicate with the PostgreSQL server using the normal frontend-backend protocol.

Embedded SQL has advantages over other methods for handling SQL commands from COBOL code. First, it takes care of
the tedious passing of information to and from variables in your C program. Second, the SQL code in the program is checked
at build time for syntactical correctness. Third, embedded SQL in COBOL is specified in the SQL standard and supported
by many other SQL database systems. The PostgreSQL implementation is designed to match this standard as much as
possible, and it is usually possible to port embedded SQL programs written for other SQL databases to PostgreSQL with
relative ease.

As already stated, programs written for the embedded SQL interface are normal COBOL programs with special code inserted
to perform database-related actions. This special code always has the form:

EXEC SQL ... END-EXEC

These statements syntactically take the place of a COBOL statement. Depending on the particular statement, they can appear
at the data division or at the procedure division. Actual executable SQLs need to be placed at the procedure division, and host
variable declarations need to be placed at data division. However, the precompiler does not validate their placements.
Embedded SQL statements follow the case-sensitivity rules of normal SQL code, and not those of COBOL.

For COBOL code notation, "fixed' or "variable" can be used. In each line, columns 1 to 6 constitute the line number area, and
column 7 is the indicator area. Embedded SQL programs also should be placed in area B (column 12 and beyond).

Note that sample code in this document omits indents for each area.

ECOBPG processes or outputs programs according to the COBOL code notation. COBOL code notation is specified using
the ecobpg command. Note, however, that the following restrictions apply:

- For "fixed" notation, area B is from columns 12 to 72. Characters in column 73 and beyond are deleted in the precompiled
source.

- For "variable" notation, area B is from column 12 to the last column of that record (up to column 251). Characters in
column 252 and beyond are deleted in the precompiled source.

ECOBPG accepts as many COBOL statements as possible. Note, however, that the following restrictions apply:

- In declaring host variable section, you can't use debug line.

- Outside of declaring host variable section, you can use debug line, but you can't contain any SQL in debug lines.

- In declaring host variable section, you can't use commas or semicolons as separator. Use space instead.

- EXEC SQL VAR command, it can be used in ECPG, is not available in ECOBPG. Use REDEFINE clause of COBOL
instead.

The following sections explain all the embedded SQL statements.

- 161 -

D.2 Managing Database Connections
This section describes how to open, close, and switch database connections.

D.2.1 Connecting to the Database Server
One connects to a database using the following statement:

EXEC SQL CONNECT TO target [AS connection-name] [USER user-name] END-EXEC.

The target can be specified in the following ways:

- dbname[@hostname][:port]

- tcp:postgresql://hostname[:port][/dbname][?options]

- unix:postgresql://hostname[:port][/dbname][?options]

- an SQL string literal containing one of the above forms

- a reference to a character variable containing one of the above forms (see examples)

- DEFAULT

If you specify the connection target literally (that is, not through a variable reference) and you don't quote the value, then the
case-insensitivity rules of normal SQL are applied. In that case you can also double-quote the individual parameters
separately as needed. In practice, it is probably less error-prone to use a (single-quoted) string literal or a variable reference.
The connection target DEFAULT initiates a connection to the default database under the default user name. No separate user
name or connection name can be specified in that case.

There are also different ways to specify the user name:

- username

- username/password

- username IDENTIFIED BY password

- username USING password

As above, the parameters username and password can be an SQL identifier, an SQL string literal, or a reference to a character
variable.

The connection-name is used to handle multiple connections in one program. It can be omitted if a program uses only one
connection. The most recently opened connection becomes the current connection, which is used by default when an SQL
statement is to be executed (see later in this chapter).

Here are some examples of CONNECT statements:

EXEC SQL CONNECT TO mydb@sql.mydomain.com END-EXEC.

EXEC SQL CONNECT TO tcp:postgresql://sql.mydomain.com/mydb AS myconnection USER john END-

EXEC.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 TARGET PIC X(25).

01 USER PIC X(5).

EXEC SQL END DECLARE SECTION END-EXEC.

 ...

MOVE "mydb@sql.mydomain.com" TO TARGET.

MOVE "john" TO USER.

EXEC SQL CONNECT TO :TARGET USER :USER END-EXEC.

- 162 -

The last form makes use of the variant referred to above as character variable reference. For this purpose, only fixed-length
string(no VARYING) variable can be used. Trailing spaces are ignored. You will see in later sections how COBOL variables
can be used in SQL statements when you prefix them with a colon.

Be advised that the format of the connection target is not specified in the SQL standard. So if you want to develop portable
applications, you might want to use something based on the last example above to encapsulate the connection target string
somewhere.

D.2.2 Choosing a Connection
SQL statements in embedded SQL programs are by default executed on the current connection, that is, the most recently
opened one. If an application needs to manage multiple connections, then there are two ways to handle this.

The first option is to explicitly choose a connection for each SQL statement, for example:

EXEC SQL AT connection-name SELECT ... END-EXEC.

This option is particularly suitable if the application needs to use several connections in mixed order.

If your application uses multiple threads of execution, they cannot share a connection concurrently. You must either explicitly
control access to the connection (using mutexes) or use a connection for each thread. If each thread uses its own connection,
you will need to use the AT clause to specify which connection the thread will use.

The second option is to execute a statement to switch the current connection. That statement is:

EXEC SQL SET CONNECTION connection-name END-EXEC.

This option is particularly convenient if many statements are to be executed on the same connection. It is not thread-aware.

Here is an example program managing multiple database connections:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

 01 DBNAME PIC X(7).

EXEC SQL END DECLARE SECTION END-EXEC.

 EXEC SQL CONNECT TO testdb1 AS con1 USER testuser END-EXEC.

 EXEC SQL CONNECT TO testdb2 AS con2 USER testuser END-EXEC.

 EXEC SQL CONNECT TO testdb3 AS con3 USER testuser END-EXEC.

* This query would be executed in the last opened database "testdb3".

 EXEC SQL SELECT current_database() INTO :DBNAME END-EXEC.

 DISPLAY "current=" DBNAME " (should be testdb3)".

* Using "AT" to run a query in "testdb2"

 EXEC SQL AT con2 SELECT current_database() INTO :DBNAME END-EXEC.

 DISPLAY "current=" DBNAME " (should be testdb2)".

* Switch the current connection to "testdb1".

 EXEC SQL SET CONNECTION con1 END-EXEC.

 EXEC SQL SELECT current_database() INTO :DBNAME END-EXEC.

 DISPLAY "current=" DBNAME " (should be testdb1)".

 EXEC SQL DISCONNECT ALL END-EXEC.

This example would produce this output:

current=testdb3 (should be testdb3)

current=testdb2 (should be testdb2)

current=testdb1 (should be testdb1)

- 163 -

D.2.3 Closing a Connection
To close a connection, use the following statement:

EXEC SQL DISCONNECT [connection] END-EXEC.

The connection can be specified in the following ways:

- connection-name

- DEFAULT

- CURRENT

- ALL

If no connection name is specified, the current connection is closed.

It is good style that an application always explicitly disconnect from every connection it opened.

D.3 Running SQL Commands
Any SQL command can be run from within an embedded SQL application. Below are some examples of how to do that.

D.3.1 Executing SQL Statements
Creating a table:

EXEC SQL CREATE TABLE foo (number integer, ascii char(16)) END-EXEC.

EXEC SQL CREATE UNIQUE INDEX num1 ON foo(number) END-EXEC.

EXEC SQL COMMIT END-EXEC.

Inserting rows:

EXEC SQL INSERT INTO foo (number, ascii) VALUES (9999, 'doodad') END-EXEC.

EXEC SQL COMMIT END-EXEC.

Deleting rows:

EXEC SQL DELETE FROM foo WHERE number = 9999 END-EXEC.

EXEC SQL COMMIT END-EXEC.

Updates:

EXEC SQL UPDATE foo

 SET ascii = 'foobar'

 WHERE number = 9999 END-EXEC.

EXEC SQL COMMIT END-EXEC.

SELECT statements that return a single result row can also be executed using EXEC SQL directly. To handle result sets with
multiple rows, an application has to use a cursor; see "D.3.2 Using Cursors" below. (As a special case, an application can fetch
multiple rows at once into an array host variable; see "Arrays".)

Single-row select:

EXEC SQL SELECT foo INTO :FooBar FROM table1 WHERE ascii = 'doodad' END-EXEC.

Also, a configuration parameter can be retrieved with the SHOW command:

EXEC SQL SHOW search_path INTO :var END-EXEC.

The tokens of the form :something are host variables, that is, they refer to variables in the COBOL program. They are
explained in "D.4 Using Host Variables".

- 164 -

D.3.2 Using Cursors
To retrieve a result set holding multiple rows, an application has to declare a cursor and fetch each row from the cursor. The
steps to use a cursor are the following: declare a cursor, open it, fetch a row from the cursor, repeat, and finally close it.

Select using cursors:

EXEC SQL DECLARE foo_bar CURSOR FOR

 SELECT number, ascii FROM foo

 ORDER BY ascii END-EXEC.

EXEC SQL OPEN foo_bar END-EXEC.

EXEC SQL FETCH foo_bar INTO :FooBar, :DooDad END-EXEC.

...

EXEC SQL CLOSE foo_bar END-EXEC.

EXEC SQL COMMIT END-EXEC.

For more details about declaration of the cursor, see "D.11.4 DECLARE", and refer to "SQL Commands" in "Reference" in
the PostgreSQL Documentation for information on FETCH command.

Note: The ECOBPG DECLARE command does not actually cause a statement to be sent to the PostgreSQL backend. The
cursor is opened in the backend (using the backend's DECLARE command) at the point when the OPEN command is
executed.

D.3.3 Managing Transactions
In the default mode, statements are committed only when EXEC SQL COMMIT is issued. The embedded SQL interface also
supports autocommit of transactions (similar to libpq behavior) via the -t command-line option to ecobpg or via the EXEC
SQL SET AUTOCOMMIT TO ON statement. In autocommit mode, each command is automatically committed unless it is
inside an explicit transaction block. This mode can be explicitly turned off using EXEC SQL SET AUTOCOMMIT TO OFF.

 See

Refer to "ecpg" in "PostgreSQL Client Applications" in the PostgreSQL Documentation for information on -t command-line
option to ecobpg.

The following transaction management commands are available:

EXEC SQL COMMIT END-EXEC

Commit an in-progress transaction.

EXEC SQL ROLLBACK END-EXEC

Roll back an in-progress transaction.

EXEC SQL SET AUTOCOMMIT TO ON END-EXEC

Enable autocommit mode.

EXEC SQL SET AUTOCOMMIT TO OFF END-EXEC

Disable autocommit mode. This is the default.

D.3.4 Prepared Statements
When the values to be passed to an SQL statement are not known at compile time, or the same statement is going to be used
many times, then prepared statements can be useful.

The statement is prepared using the command PREPARE. For the values that are not known yet, use the placeholder "?":

EXEC SQL PREPARE stmt1 FROM "SELECT oid, datname FROM pg_database WHERE oid = ?" END-EXEC.

If a statement returns a single row, the application can call EXECUTE after PREPARE to execute the statement, supplying
the actual values for the placeholders with a USING clause:

- 165 -

EXEC SQL EXECUTE stmt1 INTO :dboid, :dbname USING 1 END-EXEC.

If a statement returns multiple rows, the application can use a cursor declared based on the prepared statement. To bind input
parameters, the cursor must be opened with a USING clause:

EXEC SQL PREPARE stmt1 FROM "SELECT oid,datname FROM pg_database WHERE oid > ?" END-EXEC.

EXEC SQL DECLARE foo_bar CURSOR FOR stmt1 END-EXEC.

* when end of result set reached, break out of while loop

EXEC SQL WHENEVER NOT FOUND GOTO FETCH-END END-EXEC.

EXEC SQL OPEN foo_bar USING 100 END-EXEC.

...

PERFORM NO LIMIT

 EXEC SQL FETCH NEXT FROM foo_bar INTO :dboid, :dbname END-EXEC

END-PERFORM.

FETCH-END.

EXEC SQL CLOSE foo_bar END-EXEC.

When you don't need the prepared statement anymore, you should deallocate it:

EXEC SQL DEALLOCATE PREPARE name END-EXEC.

For more details about PREPARE, see "D.11.10 PREPARE". Also see "D.5 Dynamic SQL" for more details about using
placeholders and input parameters.

D.4 Using Host Variables
In "D.3 Running SQL Commands" you saw how you can execute SQL statements from an embedded SQL program. Some
of those statements only used fixed values and did not provide a way to insert user-supplied values into statements or have
the program process the values returned by the query. Those kinds of statements are not really useful in real applications. This
section explains in detail how you can pass data between your COBOL program and the embedded SQL statements using a
simple mechanism called host variables. In an embedded SQL program we consider the SQL statements to be guests in the
COBOL program code which is the host language. Therefore the variables of the COBOL program are called host variables.

Another way to exchange values between PostgreSQL backends and ECOBPG applications is the use of SQL descriptors,
described in "D.6 Using Descriptor Areas".

D.4.1 Overview
Passing data between the COBOL program and the SQL statements is particularly simple in embedded SQL. Instead of
having the program paste the data into the statement, which entails various complications, such as properly quoting the value,
you can simply write the name of a COBOL variable into the SQL statement, prefixed by a colon. For example:

EXEC SQL INSERT INTO sometable VALUES (:v1, 'foo', :v2) END-EXEC.

This statements refers to two COBOL variables named v1 and v2 and also uses a regular SQL string literal, to illustrate that
you are not restricted to use one kind of data or the other.

This style of inserting COBOL variables in SQL statements works anywhere a value expression is expected in an SQL
statement.

D.4.2 Declare Sections
To pass data from the program to the database, for example as parameters in a query, or to pass data from the database back
to the program, the COBOL variables that are intended to contain this data need to be declared in specially marked sections,
so the embedded SQL preprocessor is made aware of them.

This section starts with:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

- 166 -

and ends with:

EXEC SQL END DECLARE SECTION END-EXEC.

Between those lines, there must be normal COBOL variable declarations, such as:

01 INTX PIC S9(9) COMP VALUE 4.

01 FOO PIC X(15).

01 BAR PIC X(15).

As you can see, you can optionally assign an initial value to the variable. The variable's scope is determined by the location
of its declaring section within the program.

You can have as many declare sections in a program as you like.

The declarations are also echoed to the output file as normal COBOL variables, so there's no need to declare them again.
Variables that are not intended to be used in SQL commands can be declared normally outside these special sections.

The definition of a group item also must be listed inside a DECLARE section. Otherwise the preprocessor cannot handle these
types since it does not know the definition.

D.4.3 Retrieving Query Results
Now you should be able to pass data generated by your program into an SQL command. But how do you retrieve the results
of a query? For that purpose, embedded SQL provides special variants of the usual commands SELECT and FETCH. These
commands have a special INTO clause that specifies which host variables the retrieved values are to be stored in. SELECT
is used for a query that returns only single row, and FETCH is used for a query that returns multiple rows, using a cursor.

Here is an example:

*

* assume this table:

* CREATE TABLE test (a int, b varchar(50));

*

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.

 01 V1 PIC S9(9).

 01 V2 PIC X(50) VARYING.

 EXEC SQL END DECLARE SECTION END-EXEC.

 ...

 EXEC SQL SELECT a, b INTO :V1, :V2 FROM test END-EXEC.

So the INTO clause appears between the select list and the FROM clause. The number of elements in the select list and the
list after INTO (also called the target list) must be equal.

Here is an example using the command FETCH:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 V1 PIC S9(9).

01 V2 PIC X(50) VARYING.

EXEC SQL END DECLARE SECTION END-EXEC.

 ...

EXEC SQL DECLARE foo CURSOR FOR SELECT a, b FROM test END-EXEC.

 ...

PERFORM WITH

 ...

 EXEC SQL FETCH NEXT FROM foo INTO :V1, :V2 END-EXEC

- 167 -

 ...

END-PERFORM.

Here the INTO clause appears after all the normal clauses.

D.4.4 Type Mapping
When ECOBPG applications exchange values between the PostgreSQL server and the COBOL application, such as when
retrieving query results from the server or executing SQL statements with input parameters, the values need to be converted
between PostgreSQL data types and host language variable types (specifically COBOL language data types). One of the main
points of ECOBPG is that it takes care of this automatically in most cases.

In this respect, there are two kinds of data types: Some simple PostgreSQL data types, such as integer and text, can be read
and written by the application directly. Other PostgreSQL data types, such as timestamp and date can only be accessed
through character strings. special library functions does not exist in ecobpg. (pgtypes, exists in ECPG, for COBOL is not
implemented yet)

"Table D.1 Mapping Between PostgreSQL Data Types and COBOL Variable Types" shows which PostgreSQL data types
correspond to which COBOL data types. When you wish to send or receive a value of a given PostgreSQL data type, you
should declare a COBOL variable of the corresponding COBOL data type in the declare section.

Table D.1 Mapping Between PostgreSQL Data Types and COBOL Variable Types

PostgreSQL data type COBOL Host variable type

smallint PIC S9([1-4]) {BINARY|COMP|COMP-5}

integer PIC S9([5-9]) {BINARY|COMP|COMP-5}

bigint PIC S9([10-18]) {BINARY|COMP|COMP-5}

decimal

PIC S9(m)V9(n) PACKED-DECIMAL
PIC 9(m)V9(n) DISPLAY (*1)
PIC S9(m)V9(n) DISPLAY
PIC S9(m)V9(n) DISPLAY SIGN TRAILING
[SEPARATE]
PIC S9(m)V9(n) DISPLAY SIGN LEADING
[SEPARATE]

numeric (same with decimal)

real COMP-1

double precision COMP-2

small serial PIC S9([1-4]) {BINARY|COMP|COMP-5}

serial PIC S9([1-9]) {BINARY|COMP|COMP-5}

bigserial PIC S9([10-18]) {BINARY|COMP|COMP-5}

oid PIC 9(9) {BINARY|COMP|COMP-5}

character(n), varchar(n), text PIC X(n), PIC X(n) VARYING

name PIC X(NAMEDATALEN)

boolean BOOL(*2)

other types(e.g. timestamp) PIC X(n), PIC X(n) VARYING

*1: If no USAGE is specified, host variable is regarded as DISPLAY.
*2: Type definition is added automatically on pre-compiling.
Body of BOOL is PIC X(1). '1' for true and '0' for false.

You can use some pattern of digits for integer(see table), but if database sends big number with
more digits than specified, behavior is undefined.

- 168 -

PostgreSQL data type COBOL Host variable type

VALUE clause can't be used with VARYING. (Can be used with other types)
REDEFINE clause can be used, but it won't be validated on pre-compilation (The COBOL compiler will do this).

Handling Character Strings

To handle SQL character string data types, such as varchar and text, there is a possible way to declare the host variables.

The way is using the PIC X(n) VARYING type (we call it VARCHAR type from now on), which is a special type provided
by ECOBPG. The definition on type VARCHAR is converted into a group item consists of named variables. A declaration
like:

01 VAR PIC X(180) VARYING.

is converted into:

01 VAR.

49 LEN PIC S9(4) COMP-5.

49 ARR PIC X(180).

if --varchar-with-named-member option is used, it is converted into:

01 VAR.

49 VAR-LEN PIC S9(4) COMP-5.

49 VAR-ARR PIC X(180).

You can use level 1 to 48 for VARCHAR. Don't use level 49 variable right after VARCHAR variable. To use a VARCHAR
host variable as an input for SQL statement, LEN must be set the length of the string included in ARR.

To use a VARCHAR host variable as an output of SQL statement, the variable must be declared in a sufficient length. If the
length is insufficient, it can cause a buffer overrun.

PIC X(n) and VARCHAR host variables can also hold values of other SQL types, which will be stored in their string forms.

Accessing Special Data Types

ECOBPG doesn't have special support for date, timestamp, and interval types.
(ECPG has pgtypes, but ECOBPG doesn't.)
You can use PIC X(n) or VARCHAR for DB I/O with these types. See "Data Types" section in PostgreSQL's document.

Host Variables with Nonprimitive Types

As a host variable you can also use arrays, typedefs, and group items.

Arrays

To create and use array variables, OCCURENCE syntax is provided by COBOL.

The typical use case is to retrieve multiple rows from a query result without using a cursor. Without an array, to process
a query result consisting of multiple rows, it is required to use a cursor and the FETCH command. But with array host
variables, multiple rows can be received at once. The length of the array has to be defined to be able to accommodate all
rows, otherwise a buffer overrun will likely occur.

Following example scans the pg_database system table and shows all OIDs and names of the available databases:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 GROUP-ITEM.

 05 DBID PIC S9(9) COMP OCCURS 8.

 05 DBNAME PIC X(16) OCCURS 8.

01 I PIC S9(9) COMP.

EXEC SQL END DECLARE SECTION END-EXEC.

 EXEC SQL CONNECT TO testdb END-EXEC.

- 169 -

* Retrieve multiple rows into arrays at once.

 EXEC SQL SELECT oid,datname INTO :DBID, :DBNAME FROM pg_database END-EXEC.

 PERFORM VARYING I FROM 1 BY 1 UNTIL I > 8

 DISPLAY "oid=" DBID(I) ", dbname=" DBNAME(I)

 END-PERFORM.

 EXEC SQL COMMIT END-EXEC.

 EXEC SQL DISCONNECT ALL END-EXEC.

You can use member of array as simple host variable by specifying subscript of array. For specifying subscript, use C-
style "[1]", not COBOL-style "(1)". But subscript starts with 1, according to COBOL syntax.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 GROUP-ITEM.

 05 DBID PIC S9(9) COMP OCCURS 8.

EXEC SQL END DECLARE SECTION END-EXEC.

 EXEC SQL CONNECT TO testdb END-EXEC.

 EXEC SQL SELECT oid INTO :DBID[1] FROM pg_database WHERE oid=1 END-EXEC.

 DISPLAY "oid=" DBID(1)

 EXEC SQL COMMIT END-EXEC.

 EXEC SQL DISCONNECT ALL END-EXEC.

Group Item

A group item whose subordinate item names match the column names of a query result, can be used to retrieve multiple
columns at once. The group item enables handling multiple column values in a single host variable.

The following example retrieves OIDs, names, and sizes of the available databases from the pg_database system table by
using the pg_database_size() function. In this example, a group item variable dbinfo_t with members whose names match
each column in the SELECT result is used to retrieve one result row without putting multiple host variables in the FETCH
statement.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

 01 DBINFO-T TYPEDEF.

 02 OID PIC S9(9) COMP.

 02 DATNAME PIC X(65).

 02 DBSIZE PIC S9(18) COMP.

 01 DBVAL TYPE DBINFO-T.

EXEC SQL END DECLARE SECTION END-EXEC.

 EXEC SQL DECLARE cur1 CURSOR FOR SELECT oid, datname, pg_database_size(oid) AS size

FROM pg_database END-EXEC.

 EXEC SQL OPEN cur1 END-EXEC.

* when end of result set reached, break out of loop

 EXEC SQL WHENEVER NOT FOUND GOTO END-FETCH END-EXEC.

 PERFORM NO LIMIT

* Fetch multiple columns into one structure.

 EXEC SQL FETCH FROM cur1 INTO :DBVAL END-EXEC

* Print members of the structure.

 DISPLAY "oid=" OID ", datname=" DATNAME ", size=" DBSIZE

 END-PERFORM.

- 170 -

 END-FETCH.

 EXEC SQL CLOSE cur1 END-EXEC.

group item host variables "absorb" as many columns as the group item as subordinate items. Additional columns can be
assigned to other host variables. For example, the above program could also be restructured like this, with the size variable
outside the group item:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

 01 DBINFO-T TYPEDEF.

 02 OID PIC S9(9) COMP.

 02 DATNAME PIC X(65).

 01 DBVAL TYPE DBINFO-T.

 01 DBSIZE PIC S9(18) COMP.

EXEC SQL END DECLARE SECTION END-EXEC.

 EXEC SQL DECLARE cur1 CURSOR FOR SELECT oid, datname, pg_database_size(oid) AS size

FROM pg_database END-EXEC.

 EXEC SQL OPEN cur1 END-EXEC.

* when end of result set reached, break out of loop

 EXEC SQL WHENEVER NOT FOUND GOTO END-FETCH END-EXEC.

 PERFORM NO LIMIT

* Fetch multiple columns into one structure.

 EXEC SQL FETCH FROM cur1 INTO :DBVAL, :DBSIZE END-EXEC

* Print members of the structure.

 DISPLAY "oid=" OID ", datname=" DATNAME ", size=" DBSIZE

 END-PERFORM

 FETCH-END.

 EXEC SQL CLOSE cur1 END-EXEC.

You can use only non-nested group items for host variable of SQL statement. Declaration of nested group items are OK, but
you must specify non-nested part of group items for SQL. (VARCHAR, is translated to group item on pre-compilation, is not
considered as offense of this rule.) When using inner item of group item in SQL, use C-struct like period separated syntax(not
COBOL's A OF B). Here is example.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 NESTED-GROUP.

 02 CHILD1.

 03 A PIC X(10).

 03 B PIC S9(9) COMP.

 02 CHILD2.

 03 A PIC X(10).

 03 B PIC S9(9) COMP.

EXEC SQL END DECLARE SECTION END-EXEC.

* This SQL is valid. CHILD1 has no nested group items.

EXEC SQL SELECT * INTO :NESTED-GROUP.CHILD1 FROM TABLE1 END-EXEC.

For specifying basic item of group items, full specification is not needed if the specification is enough for identifying the item.
This is from COBOL syntax. For more detail, see resources of COBOL syntax.

TYPEDEF

Use the typedef keyword to map new types to already existing types.

- 171 -

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

 01 MYCHARTYPE TYPEDEF PIC X(40).

 01 SERIAL-T TYPEDEF PIC S9(9) COMP.

EXEC SQL END DECLARE SECTION END-EXEC.

Note that you could also use:

EXEC SQL TYPE SERIAL-T IS PIC S9(9) COMP-5. END-EXEC.

This declaration does not need to be part of a declare section.

D.4.5 Handling Nonprimitive SQL Data Types
This section contains information on how to handle nonscalar and user-defined SQL-level data types in ECOBPG
applications. Note that this is distinct from the handling of host variables of nonprimitive types, described in the previous
section.

Arrays

SQL-level arrays are not directly supported in ECOBPG. It is not possible to simply map an SQL array into a COBOL array
host variable. This will result in undefined behavior. Some workarounds exist, however.

If a query accesses elements of an array separately, then this avoids the use of arrays in ECOBPG. Then, a host variable with
a type that can be mapped to the element type should be used. For example, if a column type is array of integer, a host variable
of type PIC S9(9) COMP can be used. Also if the element type is varchar or text, a host variable of type VARCHAR can be
used.

Here is an example. Assume the following table:

CREATE TABLE t3 (

 ii integer[]

);

testdb=> SELECT * FROM t3;

 ii

 {1,2,3,4,5}

(1 row)

The following example program retrieves the 4th element of the array and stores it into a host variable of type PIC S9(9)
COMP-5:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 II PIC S9(9) COMP.

EXEC SQL END DECLARE SECTION END-EXEC.

EXEC SQL DECLARE cur1 CURSOR FOR SELECT ii[4] FROM t3 END-EXEC.

EXEC SQL OPEN cur1 END-EXEC.

EXEC SQL WHENEVER NOT FOUND GOTO END-FETCH END-EXEC.

PERFORM NO LIMIT

 EXEC SQL FETCH FROM cur1 INTO :II END-EXEC

 DISPLAY "ii=" II

END-PERFORM.

- 172 -

END-FETCH.

EXEC SQL CLOSE cur1 END-EXEC.

To map multiple array elements to the multiple elements in an array type host variables each element of array column and each
element of the host variable array have to be managed separately, for example:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 GROUP-ITEM.

 05 II_A PIC S9(9) COMP OCCURS 8.

EXEC SQL END DECLARE SECTION END-EXEC.

EXEC SQL DECLARE cur1 CURSOR FOR SELECT ii[1], ii[2], ii[3], ii[4] FROM t3 END-EXEC.

EXEC SQL OPEN cur1 END-EXEC.

EXEC SQL WHENEVER NOT FOUND GOTO END-FETCH END-EXEC.

PERFORM NO LIMIT

 EXEC SQL FETCH FROM cur1 INTO :II_A[1], :II_A[2], :II_A[3], :II_A[4] END-EXEC

 ...

END-PERFORM.

Note again that.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 GROUP-ITEM.

 05 II_A PIC S9(9) COMP OCCURS 8.

EXEC SQL END DECLARE SECTION END-EXEC.

EXEC SQL DECLARE cur1 CURSOR FOR SELECT ii FROM t3 END-EXEC.

EXEC SQL OPEN cur1 END-EXEC.

EXEC SQL WHENEVER NOT FOUND GOTO END-FETCH END-EXEC.

PERFORM NO LIMIT

* WRONG

 EXEC SQL FETCH FROM cur1 INTO :II_A END-EXEC

 ...

END-PERFORM.

would not work correctly in this case, because you cannot map an array type column to an array host variable directly.

Another workaround is to store arrays in their external string representation in host variables of type VARCHAR. For more
details about this representation.

 See

Refer to "Arrays" in "Tutorial" in the PostgreSQL Documentation for information more details about this representation.

Note that this means that the array cannot be accessed naturally as an array in the host program (without further processing
that parses the text representation).

Composite Types

Composite types are not directly supported in ECOBPG, but an easy workaround is possible. The available workarounds are
similar to the ones described for arrays above: Either access each attribute separately or use the external string representation.

For the following examples, assume the following type and table:

CREATE TYPE comp_t AS (intval integer, textval varchar(32));

CREATE TABLE t4 (compval comp_t);

INSERT INTO t4 VALUES ((256, 'PostgreSQL'));

- 173 -

The most obvious solution is to access each attribute separately. The following program retrieves data from the example table
by selecting each attribute of the type comp_t separately:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 INTVAL PIC S9(9) COMP.

01 TEXTVAL PIC X(33) VARYING.

EXEC SQL END DECLARE SECTION END-EXEC.

* Put each element of the composite type column in the SELECT list.

EXEC SQL DECLARE cur1 CURSOR FOR SELECT (compval).intval, (compval).textval FROM t4 END-

EXEC.

EXEC SQL OPEN cur1 END-EXEC.

EXEC SQL WHENEVER NOT FOUND GOTO END-FETCH END-EXEC.

PERFORM NO LIMIT

* Fetch each element of the composite type column into host variables.

 EXEC SQL FETCH FROM cur1 INTO :INTVAL, :TEXTVAL END-EXEC

 DISPLAY "intval=" INTVAL ", textval=" ARR OF TEXTVAL

END-PERFORM.

END-FETCH.

EXEC SQL CLOSE cur1 END-EXEC.

To enhance this example, the host variables to store values in the FETCH command can be gathered into one group item. For
more details about the host variable in the group item form, see "Group Item". To switch to the group item, the example can
be modified as below. The two host variables, intval and textval, become subordinate items of the comp_t group item, and
the group item is specified on the FETCH command.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 COMP-T TYPEDEF.

 02 INTVAL PIC S9(9) COMP.

 02 TEXTVAL PIC X(33) VARYING.

01 COMPVAL TYPE COMP-T.

EXEC SQL END DECLARE SECTION END-EXEC.

* Put each element of the composite type column in the SELECT list.

EXEC SQL DECLARE cur1 CURSOR FOR SELECT (compval).intval, (compval).textval FROM t4 END-

EXEC.

EXEC SQL OPEN cur1 END-EXEC.

EXEC SQL WHENEVER NOT FOUND GOTO END-FETCH END-EXEC.

PERFORM NO LIMIT

* Put all values in the SELECT list into one structure.

 EXEC SQL FETCH FROM cur1 INTO :COMPVAL END-EXEC

 DISPLAY "intval=" INTVAL ", textval=" ARR OF TEXTVAL

END-PERFORM.

END-FETCH.

EXEC SQL CLOSE cur1 END-EXEC.

Although a group item is used in the FETCH command, the attribute names in the SELECT clause are specified one by one.
This can be enhanced by using a * to ask for all attributes of the composite type value.

...

EXEC SQL DECLARE cur1 CURSOR FOR SELECT (compval).* FROM t4 END-EXEC.

EXEC SQL OPEN cur1 END-EXEC.

EXEC SQL WHENEVER NOT FOUND GOTO END-FETCH END-EXEC.

PERFORM NO LIMIT

- 174 -

* Put all values in the SELECT list into one structure.

 EXEC SQL FETCH FROM cur1 INTO :COMPVAL END-EXEC

 DISPLAY "intval=" INTVAL ", textval=" ARR OF TEXTVAL

END-PERFORM.

This way, composite types can be mapped into structures almost seamlessly, even though ECOBPG does not understand the
composite type itself.

Finally, it is also possible to store composite type values in their external string representation in host variables of type
VARCHAR. But that way, it is not easily possible to access the fields of the value from the host program.

User-defined Base Types

New user-defined base types are not directly supported by ECOBPG. You can use the external string representation and host
variables of type VARCHAR, and this solution is indeed appropriate and sufficient for many types.

Here is an example using the data type complex.

 See

Refer to "User-defined Types" in "Server Programming" in the PostgreSQL Documentation for information on the data type
complex.

The external string representation of that type is (%lf,%lf), which is defined in the functions complex_in() and complex_out()
functions. The following example inserts the complex type values (1,1) and (3,3) into the columns a and b, and select them
from the table after that.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

 01 A PIC X(64) VARYING.

 01 B PIC X(64) VARYING.

EXEC SQL END DECLARE SECTION END-EXEC.

EXEC SQL INSERT INTO test_complex VALUES ('(1,1)', '(3,3)') END-EXEC.

EXEC SQL DECLARE cur1 CURSOR FOR SELECT a, b FROM test_complex END-EXEC.

EXEC SQL OPEN cur1 END-EXEC.

EXEC SQL WHENEVER NOT FOUND GOTO END-FETCH END-EXEC.

PERFORM NO LIMIT

 EXEC SQL FETCH FROM cur1 INTO :A, :B END-EXEC

 DISPLAY "a=" ARR OF A ", b=" ARR OF B

END-PERFORM.

END-FETCH.

EXEC SQL CLOSE cur1 END-EXEC.

Another workaround is avoiding the direct use of the user-defined types in ECOBPG and instead create a function or cast that
converts between the user-defined type and a primitive type that ECOBPG can handle. Note, however, that type casts,
especially implicit ones, should be introduced into the type system very carefully.

For example:

CREATE FUNCTION create_complex(r double precision, i double precision) RETURNS complex

LANGUAGE SQL

IMMUTABLE

AS $$ SELECT $1 * complex '(1,0)' + $2 * complex '(0,1)' $$;

After this definition, the following:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 A COMP-2.

- 175 -

01 B COMP-2.

01 C COMP-2.

01 D COMP-2.

EXEC SQL END DECLARE SECTION END-EXEC.

MOVE 1 TO A.

MOVE 2 TO B.

MOVE 3 TO C.

MOVE 4 TO D.

EXEC SQL INSERT INTO test_complex VALUES (create_complex(:A, :B), create_complex(:C, :D))

END-EXEC.

has the same effect as

EXEC SQL INSERT INTO test_complex VALUES ('(1,2)', '(3,4)') END-EXEC.

D.4.6 Indicators
The examples above do not handle null values. In fact, the retrieval examples will raise an error if they fetch a null value from
the database. To be able to pass null values to the database or retrieve null values from the database, you need to append a
second host variable specification to each host variable that contains data. This second host variable is called the indicator and
contains a flag that tells whether the datum is null, in which case the value of the real host variable is ignored. Here is an
example that handles the retrieval of null values correctly:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 VAL PIC X(50) VARYING.

01 VAL_IND PIC S9(9) COMP-5.

EXEC SQL END DECLARE SECTION END-EXEC.

 ...

EXEC SQL SELECT b INTO :VAL :VAL_IND FROM test1 END-EXEC.

The indicator variable val_ind will be zero if the value was not null, and it will be negative if the value was null.

The indicator has another function: if the indicator value is positive, it means that the value is not null, but it was truncated
when it was stored in the host variable.

D.5 Dynamic SQL
In many cases, the particular SQL statements that an application has to execute are known at the time the application is
written. In some cases, however, the SQL statements are composed at run time or provided by an external source. In these
cases you cannot embed the SQL statements directly into the COBOL source code, but there is a facility that allows you to
call arbitrary SQL statements that you provide in a string variable.

D.5.1 Executing Statements without a Result Set
The simplest way to execute an arbitrary SQL statement is to use the command EXECUTE IMMEDIATE. For example:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 STMT PIC X(30) VARYING.

EXEC SQL END DECLARE SECTION END-EXEC.

MOVE "CREATE TABLE test1 (...);" TO ARR OF STMT.

COMPUTE LEN OF STMT = FUNCTION STORED-CHAR-LENGTH (ARR OF STMT).

EXEC SQL EXECUTE IMMEDIATE :STMT END-EXEC.

EXECUTE IMMEDIATE can be used for SQL statements that do not return a result set (e.g., DDL, INSERT, UPDATE,
DELETE). You cannot execute statements that retrieve data (e.g., SELECT) this way. The next section describes how to do
that.

- 176 -

D.5.2 Executing a Statement with Input Parameters
A more powerful way to execute arbitrary SQL statements is to prepare them once and execute the prepared statement as often
as you like. It is also possible to prepare a generalized version of a statement and then execute specific versions of it by
substituting parameters. When preparing the statement, write question marks where you want to substitute parameters later.
For example:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 STMT PIC X(40) VARYING.

EXEC SQL END DECLARE SECTION END-EXEC.

MOVE "INSERT INTO test1 VALUES(?, ?);" TO ARR OF STMT.

COMPUTE LEN OF STMT = FUNCTION STORED-CHAR-LENGTH (ARR OF STMT).

EXEC SQL PREPARE MYSTMT FROM :STMT END-EXEC.

 ...

EXEC SQL EXECUTE MYSTMT USING 42, 'foobar' END-EXEC.

When you don't need the prepared statement anymore, you should deallocate it:

EXEC SQL DEALLOCATE PREPARE name END-EXEC.

D.5.3 Executing a Statement with a Result Set
To execute an SQL statement with a single result row, EXECUTE can be used. To save the result, add an INTO clause.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 STMT PIC X(50) VARYING.

01 V1 PIC S9(9) COMP.

01 V2 PIC S9(9) COMP.

01 V3 PIC X(50) VARYING.

EXEC SQL END DECLARE SECTION END-EXEC.

MOVE "SELECT a, b, c FROM test1 WHERE a > ?" TO ARR OF STMT.

COMPUTE LEN OF STMT = FUNCTION STORED-CHAR-LENGTH (ARR OF STMT).

EXEC SQL PREPARE MYSTMT FROM :STMT END-EXEC.

 ...

EXEC SQL EXECUTE MYSTMT INTO :V1, :V2, :V3 USING 37 END-EXEC.

An EXECUTE command can have an INTO clause, a USING clause, both, or neither.

If a query is expected to return more than one result row, a cursor should be used, as in the following example. (See "D.3.2
Using Cursors" for more details about the cursor.)

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 DBANAME PIC X(128) VARYING.

01 DATNAME PIC X(128) VARYING.

01 STMT PIC X(200) VARYING.

EXEC SQL END DECLARE SECTION END-EXEC.

MOVE "SELECT u.usename as dbaname, d.datname

- " FROM pg_database d, pg_user u

- " WHERE d.datdba = u.usesysid"

TO ARR OF STMT.

COMPUTE LEN OF STMT = FUNCTION STORED-CHAR-LENGTH (ARR OF STMT).

EXEC SQL CONNECT TO testdb AS con1 USER testuser END-EXEC.

EXEC SQL PREPARE STMT1 FROM :STMT END-EXEC.

EXEC SQL DECLARE cursor1 CURSOR FOR STMT1 END-EXEC.

EXEC SQL OPEN cursor1 END-EXEC.

EXEC SQL WHENEVER NOT FOUND GOTO FETCH-END END-EXEC.

- 177 -

PERFORM NO LIMIT

 EXEC SQL FETCH cursor1 INTO :DBANAME,:DATNAME END-EXEC

 DISPLAY "dbaname=" ARR OF DBANAME ", datname=" ARR OF DATNAME

END-PERFORM.

FETCH-END.

EXEC SQL CLOSE cursor1 END-EXEC.

EXEC SQL COMMIT END-EXEC.

EXEC SQL DISCONNECT ALL END-EXEC.

D.6 Using Descriptor Areas
An SQL descriptor area is a more sophisticated method for processing the result of a SELECT, FETCH or a DESCRIBE
statement. An SQL descriptor area groups the data of one row of data together with metadata items into one data group item.
The metadata is particularly useful when executing dynamic SQL statements, where the nature of the result columns might
not be known ahead of time. PostgreSQL provides a way to use Descriptor Areas: the named SQL Descriptor Areas.

D.6.1 Named SQL Descriptor Areas
A named SQL descriptor area consists of a header, which contains information concerning the entire descriptor, and one or
more item descriptor areas, which basically each describe one column in the result row.

Before you can use an SQL descriptor area, you need to allocate one:

EXEC SQL ALLOCATE DESCRIPTOR identifier END-EXEC.

The identifier serves as the "variable name" of the descriptor area. When you don't need the descriptor anymore, you should
deallocate it:

EXEC SQL DEALLOCATE DESCRIPTOR identifier END-EXEC.

To use a descriptor area, specify it as the storage target in an INTO clause, instead of listing host variables:

EXEC SQL FETCH NEXT FROM mycursor INTO SQL DESCRIPTOR mydesc END-EXEC.

If the result set is empty, the Descriptor Area will still contain the metadata from the query, i.e. the field names.

For not yet executed prepared queries, the DESCRIBE statement can be used to get the metadata of the result set:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 SQL-STMT PIC X(30) VARYING.

EXEC SQL END DECLARE SECTION END-EXEC.

MOVE "SELECT * FROM table1" TO ARR OF SQL-STMT.

COMPUTE LEN OF SQL-STMT = FUNCTION STORED-CHAR-LENGTH (ARR OF SQL-STMT) .

EXEC SQL PREPARE STMT1 FROM :SQL-STMT END-EXEC.

EXEC SQL DESCRIBE STMT1 INTO SQL DESCRIPTOR MYDESC END-EXEC.

Before PostgreSQL 9.0, the SQL keyword was optional, so using DESCRIPTOR and SQL DESCRIPTOR produced named
SQL Descriptor Areas. Now it is mandatory, omitting the SQL keyword is regarded as the syntax that produces SQLDA
Descriptor Areas. However, ecobpg does not support SQLDA and it causes an error.

In DESCRIBE and FETCH statements, the INTO and USING keywords can be used to similarly: they produce the result set
and the metadata in a Descriptor Area.

Now how do you get the data out of the descriptor area? You can think of the descriptor area as a group item with named fields.
To retrieve the value of a field from the header and store it into a host variable, use the following command:

EXEC SQL GET DESCRIPTOR name :hostvar = field END-EXEC.

- 178 -

Currently, there is only one header field defined: COUNT, which tells how many item descriptor areas exist (that is, how
many columns are contained in the result). The host variable needs to be of an integer type as PIC S9(9) COMP-5. To get a
field from the item descriptor area, use the following command:

EXEC SQL GET DESCRIPTOR name VALUE num :hostvar = field END-EXEC.

num can be a host variable containing an integer as PIC S9(9) COMP-5.
hostvar must be PIC S9(9) COMP-5 if type of the field is integer. Possible fields are:

CARDINALITY (integer)

number of rows in the result set

DATA

actual data item (therefore, the data type of this field depends on the query)

DATETIME_INTERVAL_CODE (integer)

When TYPE is 9, DATETIME_INTERVAL_CODE will have a value of 1 for DATE, 2 for TIME, 3 for TIMESTAMP,
4 for TIME WITH TIME ZONE, or 5 for TIMESTAMP WITH TIME ZONE.

DATETIME_INTERVAL_PRECISION (integer)

not implemented

INDICATOR (integer)

the indicator (indicating a null value or a value truncation)

KEY_MEMBER (integer)

not implemented

LENGTH (integer)

length of the datum in characters

NAME (string)

name of the column

NULLABLE (integer)

not implemented

OCTET_LENGTH (integer)

length of the character representation of the datum in bytes

PRECISION (integer)

precision (for type numeric)

RETURNED_LENGTH (integer)

length of the datum in characters

RETURNED_OCTET_LENGTH (integer)

length of the character representation of the datum in bytes

SCALE (integer)

scale (for type numeric)

TYPE (integer)

numeric code of the data type of the column

In EXECUTE, DECLARE and OPEN statements, the effect of the INTO and USING keywords are different. A Descriptor
Area can also be manually built to provide the input parameters for a query or a cursor and USING SQL DESCRIPTOR name
is the way to pass the input parameters into a parametrized query. The statement to build a named SQL Descriptor Area is
below:

- 179 -

EXEC SQL SET DESCRIPTOR name VALUE num field = :hostvar END-EXEC.

PostgreSQL supports retrieving more than one record in one FETCH statement and storing the data in host variables in this
case assumes that the variable is an array. E.g.:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 GROUP-ITEM.

 05 IDNUM PIC S9(9) COMP OCCURS 5.

EXEC SQL END DECLARE SECTION END-EXEC.

EXEC SQL FETCH 5 FROM mycursor INTO SQL DESCRIPTOR mydesc END-EXEC.

EXEC SQL GET DESCRIPTOR mydesc VALUE 1 :IDNUM = DATA END-EXEC.

D.7 Error Handling
This section describes how you can handle exceptional conditions and warnings in an embedded SQL program. There are two
nonexclusive facilities for this.

- Callbacks can be configured to handle warning and error conditions using the WHENEVER command.

- Detailed information about the error or warning can be obtained from the sqlca variable.

D.7.1 Setting Callbacks
One simple method to catch errors and warnings is to set a specific action to be executed whenever a particular condition
occurs. In general:

EXEC SQL WHENEVER condition action END-EXEC.

condition can be one of the following:

SQLERROR

The specified action is called whenever an error occurs during the execution of an SQL statement.

SQLWARNING

The specified action is called whenever a warning occurs during the execution of an SQL statement.

NOT FOUND

The specified action is called whenever an SQL statement retrieves or affects zero rows. (This condition is not an error,
but you might be interested in handling it specially.)

action can be one of the following:

CONTINUE

This effectively means that the condition is ignored. This is the default.

GOTO label
GO TO label

Jump to the specified label (using a COBOL goto statement).

SQLPRINT

Print a message to standard error. This is useful for simple programs or during prototyping. The details of the message
cannot be configured.

STOP

Call STOP, which will terminate the program.

- 180 -

CALL name usingargs
DO name usingargs

Call the specified functions with the following characters including arguments. Thus, syntaxes (including compiler
depending) are able to be placed as well as the arguments. Though, there are some limitation as following:

- You can't use RETURNING, ON EXCEPTION or OVER FLOW clauses.

- In the called subprogram, you must specify CONTINUE for every action with WHENEVER statement.

The SQL standard only provides for the actions CONTINUE and GOTO (and GO TO).

Here is an example that you might want to use in a simple program. It prints a simple message when a warning occurs and
aborts the program when an error happens:

EXEC SQL WHENEVER SQLWARNING SQLPRINT END-EXEC.

EXEC SQL WHENEVER SQLERROR STOP END-EXEC.

The statement EXEC SQL WHENEVER is a directive of the SQL preprocessor, not a COBOL statement. The error or
warning actions that it sets apply to all embedded SQL statements that appear below the point where the handler is set, unless
a different action was set for the same condition between the first EXEC SQL WHENEVER and the SQL statement causing
the condition, regardless of the flow of control in the COBOL program. So neither of the two following COBOL program
excerpts will have the desired effect:

*

* WRONG

*

 ...

 IF VERBOSE = 1 THEN

 EXEC SQL WHENEVER SQLWARNING SQLPRINT END-EXEC

 END-IF.

 ...

 EXEC SQL SELECT ... END-EXEC.

 ...

*

* WRONG

*

 ...

 CALL SET-ERROR-HANDLER.

* (and execute "EXEC SQL WHENEVER SQLERROR STOP" in SET-ERROR-HANDLER)

 ...

 EXEC SQL SELECT ... END-EXEC.

 ...

D.7.2 sqlca
For more powerful error handling, the embedded SQL interface provides a global variable with the name sqlca (SQL
communication area) that has the following group item:

01 sqlca_t.

 10 sqlcaid PIC X(8).

 10 sqlabc PIC S9(9) COMP-5.

 10 sqlcode PIC S9(9) COMP-5.

 10 sqlerrm.

 20 sqlerrml PIC S9(9) COMP-5.

 20 sqlerrmc PIC X(150).

 10 sqlerrp PIC X(8).

 10 sqlerrd PIC S9(9) COMP-5 OCCURS 6.

 10 sqlwarn PIC X(8).

 10 sqlstate PIC X(5).

- 181 -

(In a multithreaded program, every thread automatically gets its own copy of sqlca. This works similarly to the handling of
the standard C global variable errno.)

sqlca covers both warnings and errors. If multiple warnings or errors occur during the execution of a statement, then sqlca will
only contain information about the last one.

If no error occurred in the last SQL statement, SQLCODE will be 0 and SQLSTATE will be "00000". If a warning or error
occurred, then SQLCODE will be negative and SQLSTATE will be different from "00000". A positive SQLCODE indicates
a harmless condition, such as that the last query returned zero rows. SQLCODE and SQLSTATE are two different error code
schemes; details appear below.

If the last SQL statement was successful, then SQLERRD(2) contains the OID of the processed row, if applicable, and
SQLERRD(3) contains the number of processed or returned rows, if applicable to the command.

In case of an error or warning, SQLERRMC will contain a string that describes the error. The field SQLERRML contains the
length of the error message that is stored in SQLERRMC (the result of FUNCTION STORED-CHAR-LENGTH. Note that
some messages are too long to fit in the fixed-size sqlerrmc array; they will be truncated.

In case of a warning, the 3rd character of SQLWARN is set to W. (In all other cases, it is set to something different from W.)
If the 2nd character of SQLWARN is set to W, then a value was truncated when it was stored in a host variable. The 1st
character of SQLWARN is set to W if any of the other elements are set to indicate a warning.

The fields sqlcaid, sqlcabc, sqlerrp, and the remaining elements of sqlerrd and sqlwarn currently contain no useful
information.

The structure sqlca is not defined in the SQL standard, but is implemented in several other SQL database systems. The
definitions are similar at the core, but if you want to write portable applications, then you should investigate the different
implementations carefully.

Here is one example that combines the use of WHENEVER and sqlca, printing out the contents of sqlca when an error occurs.
This is perhaps useful for debugging or prototyping applications, before installing a more "user-friendly" error handler.

EXEC SQL WHENEVER SQLERROR GOTO PRINT_SQLCA END-EXEC.

PRINT_SQLCA.

 DISPLAY "==== sqlca ====".

 DISPLAY "SQLCODE: " SQLCODE.

 DISPLAY "SQLERRML: " SQLERRML.

 DISPLAY "SQLERRMC: " SQLERRMC.

 DISPLAY "SQLERRD: " SQLERRD(1) " " SQLERRD(2) " " SQLERRD(3)" " SQLERRD(4) " "

SQLERRD(5) " " SQLERRD(6).

 DISPLAY "SQLSTATE: " SQLSTATE.

 DISPLAY "===============".

The result could look as follows (here an error due to a misspelled table name):

==== sqlca ====

sqlcode: -000000400

SQLERRML: +000000064

SQLERRMC: relation "pg_databasep" does not exist (10292) on line 93

sqlerrd: +000000000 +000000000 +000000000 +000000000 +000000000 +000000000

sqlstate: 42P01

===============

D.7.3 SQLSTATE vs. SQLCODE
The fields SQLSTATE and SQLCODE are two different schemes that provide error codes. Both are derived from the SQL
standard, but SQLCODE has been marked deprecated in the SQL-92 edition of the standard and has been dropped in later
editions. Therefore, new applications are strongly encouraged to use SQLSTATE.

SQLSTATE is a five-character array. The five characters contain digits or upper-case letters that represent codes of various
error and warning conditions. SQLSTATE has a hierarchical scheme: the first two characters indicate the general class of the
condition, the last three characters indicate a subclass of the general condition. A successful state is indicated by the code
00000. The SQLSTATE codes are for the most part defined in the SQL standard. The PostgreSQL server natively supports

- 182 -

SQLSTATE error codes; therefore a high degree of consistency can be achieved by using this error code scheme throughout
all applications.

 See

Refer to "PostgreSQL Error Codes" in "Appendixes" in the PostgreSQL Documentation for further information.

SQLCODE, the deprecated error code scheme, is a simple integer. A value of 0 indicates success, a positive value indicates
success with additional information, and a negative value indicates an error. The SQL standard only defines the positive value
+100, which indicates that the last command returned or affected zero rows, and no specific negative values. Therefore, this
scheme can only achieve poor portability and does not have a hierarchical code assignment. Historically, the embedded SQL
processor for PostgreSQL has assigned some specific SQLCODE values for its use, which are listed below with their numeric
value and their symbolic name. Remember that these are not portable to other SQL implementations. To simplify the porting
of applications to the SQLSTATE scheme, the corresponding SQLSTATE is also listed. There is, however, no one-to-one
or one-to-many mapping between the two schemes (indeed it is many-to-many), so you should consult the global SQLSTATE
in each case.

 See

Refer to "PostgreSQL Error Codes" in "Appendixes" in the PostgreSQL Documentation.

These are the assigned SQLCODE values:

0

Indicates no error. (SQLSTATE 00000)

100

This is a harmless condition indicating that the last command retrieved or processed zero rows, or that you are at the end
of the cursor. (SQLSTATE 02000)

When processing a cursor in a loop, you could use this code as a way to detect when to abort the loop, like this:

PERFORM NO LIMIT

 EXEC SQL FETCH ... END-EXEC

 IF SQLCODE = 100 THEN

 GO TO FETCH-END

 END-IF

END-PERFORM.

But WHENEVER NOT FOUND GOTO ... effectively does this internally, so there is usually no advantage in writing this
out explicitly.

-12

Indicates that your virtual memory is exhausted. The numeric value is defined as -ENOMEM. (SQLSTATE YE001)

-200

Indicates the preprocessor has generated something that the library does not know about. Perhaps you are running
incompatible versions of the preprocessor and the library. (SQLSTATE YE002)

-201

This means that the command specified more host variables than the command expected. (SQLSTATE 07001 or 07002)

-202

This means that the command specified fewer host variables than the command expected. (SQLSTATE 07001 or 07002)

-203

This means a query has returned multiple rows but the statement was only prepared to store one result row (for example,
because the specified variables are not arrays). (SQLSTATE 21000)

- 183 -

-204

The host variable is of type signed int and the datum in the database is of a different type and contains a value that cannot
be interpreted as a signed int. The library uses strtol() for this conversion. (SQLSTATE 42804)

-205

The host variable is of type unsigned int and the datum in the database is of a different type and contains a value that cannot
be interpreted as an unsigned int. The library uses strtoul() for this conversion. (SQLSTATE 42804)

-206

The host variable is of type float and the datum in the database is of another type and contains a value that cannot be
interpreted as a float. The library uses strtod() for this conversion. (SQLSTATE 42804)

-207

The host variable is of type DECIMAL and the datum in the database is of another type and contains a value that cannot
be interpreted as a DECIMAL or DISPLAY value. For the case of DISPLAY, this error happens if values in the database
is too large for converting to DISPLAY value. (SQLSTATE 42804)

-208

The host variable is of type interval and the datum in the database is of another type and contains a value that cannot be
interpreted as an interval value. (SQLSTATE 42804)

-209

The host variable is of type date and the datum in the database is of another type and contains a value that cannot be
interpreted as a date value. (SQLSTATE 42804)

-210

The host variable is of type timestamp and the datum in the database is of another type and contains a value that cannot
be interpreted as a timestamp value. (SQLSTATE 42804)

-211

This means the host variable is of type bool and the datum in the database is neither 't' nor 'f'. (SQLSTATE 42804)

-212

The statement sent to the PostgreSQL server was empty. (This cannot normally happen in an embedded SQL program,
so it might point to an internal error.) (SQLSTATE YE002)

-213

A null value was returned and no null indicator variable was supplied. (SQLSTATE 22002)

-214

An ordinary variable was used in a place that requires an array. (SQLSTATE 42804)

-215

The database returned an ordinary variable in a place that requires array value. (SQLSTATE 42804)

-220

The program tried to access a connection that does not exist. (SQLSTATE 08003)

-221

The program tried to access a connection that does exist but is not open. (This is an internal error.) (SQLSTATE YE002)

-230

The statement you are trying to use has not been prepared. (SQLSTATE 26000)

-240

The descriptor specified was not found. The statement you are trying to use has not been prepared. (SQLSTATE 33000)

-241

The descriptor index specified was out of range. (SQLSTATE 07009)

- 184 -

-242

An invalid descriptor item was requested. (This is an internal error.) (SQLSTATE YE002)

-243

During the execution of a dynamic statement, the database returned a numeric value and the host variable was not
numeric. (SQLSTATE 07006)

-244

During the execution of a dynamic statement, the database returned a non-numeric value and the host variable was
numeric. (SQLSTATE 07006)

-400

Some error caused by the PostgreSQL server. The message contains the error message from the PostgreSQL server.

-401

The PostgreSQL server signaled that we cannot start, commit, or rollback the transaction. (SQLSTATE 08007)

-402

The connection attempt to the database did not succeed. (SQLSTATE 08001)

-403

Duplicate key error, violation of unique constraint. (SQLSTATE 23505)

-404

A result for the subquery is not single row. (SQLSTATE 21000)

-602

An invalid cursor name was specified. (SQLSTATE 34000)

-603

Transaction is in progress. (SQLSTATE 25001)

-604

There is no active (in-progress) transaction. (SQLSTATE 25P01)

-605

An existing cursor name was specified. (SQLSTATE 42P03)

D.8 Preprocessor Directives
Several preprocessor directives are available that modify how the ecobpg preprocessor parses and processes a file.

D.8.1 Including Files
To include an external file into your embedded SQL program, use:

EXEC SQL INCLUDE filename END-EXEC.

EXEC SQL INCLUDE <filename> END-EXEC.

EXEC SQL INCLUDE "filename" END-EXEC.

The embedded SQL preprocessor will look for a file named filename.pco, preprocess it, and include it in the resulting COBOL
output. Thus, embedded SQL statements in the included file are handled correctly.

By default, the ecobpg preprocessor will search a file at the current directory. This behavior can be changed by the ecobpg
commandline option.

First, the preprocessor tries to locate a file by specified file name at the current directory. If it fails and the file name does not
end with .pco, the preprocessor also tries to locate a file with the suffix at the same directory.

- 185 -

The difference between EXEC SQL INCLUDE and COPY statement is whether precompiler processes embedded SQLs in
the file, or not. If the file contains embedded SQLs, use EXEC SQL INCLUDE.

 Note

The include file name is case-sensitive, even though the rest of the EXEC SQL INCLUDE command follows the normal SQL
case-sensitivity rules.

D.8.2 The define and undef Directives
Similar to the directive #define that is known from C, embedded SQL has a similar concept:

EXEC SQL DEFINE name END-EXEC.

EXEC SQL DEFINE name value END-EXEC.

So you can define a name:

EXEC SQL DEFINE HAVE_FEATURE END-EXEC.

And you can also define constants:

EXEC SQL DEFINE MYNUMBER 12 END-EXEC.

EXEC SQL DEFINE MYSTRING 'abc' END-EXEC.

Use undef to remove a previous definition:

EXEC SQL UNDEF MYNUMBER END-EXEC.

Note that a constant in the SQL statement is only replaced by EXEC SQL DEFINE. The replacement may change the number
of characters in a line, but ecobpg does not validate it after the replacement. Pay attention to the limitation of the number of
characters in a line.

D.8.3 ifdef, ifndef, else, elif, and endif Directives
You can use the following directives to compile code sections conditionally:

EXEC SQL ifdef name END-EXEC.

Checks a name and processes subsequent lines if name has been created with EXEC SQL define name.

EXEC SQL ifndef name END-EXEC.

Checks a name and processes subsequent lines if name has not been created with EXEC SQL define name.

EXEC SQL else END-EXEC.

Starts processing an alternative section to a section introduced by either EXEC SQL ifdef name or EXEC SQL ifndef name.

EXEC SQL elif name END-EXEC.

Checks name and starts an alternative section if name has been created with EXEC SQL define name.

EXEC SQL endif END-EXEC.

Ends an alternative section.

Example:

EXEC SQL ifndef TZVAR END-EXEC.

EXEC SQL SET TIMEZONE TO 'GMT' END-EXEC.

EXEC SQL elif TZNAME END-EXEC.

- 186 -

EXEC SQL SET TIMEZONE TO TZNAME END-EXEC.

EXEC SQL else END-EXEC.

EXEC SQL SET TIMEZONE TO TZVAR END-EXEC.

EXEC SQL endif END-EXEC.

D.9 Processing Embedded SQL Programs
Now that you have an idea how to form embedded SQL COBOL programs, you probably want to know how to compile them.
Before compiling you run the file through the embedded SQL COBOL preprocessor, which converts the SQL statements you
used to special function calls. After compiling, you must link with a special library that contains the needed functions. These
functions fetch information from the arguments, perform the SQL command using the libpq interface, and put the result in
the arguments specified for output.

The preprocessor program is called ecobpg and is included in a normal PostgreSQL installation. Embedded SQL programs
are typically named with an extension .pco. If you have a program file called prog1.pco, you can preprocess it by simply
calling:

ecobpg prog1.pco

This will create a file called prog1.cob. If your input files do not follow the suggested naming pattern, you can specify the
output file explicitly using the -o option.

The preprocessed file can be compiled normally, following the usage of the compiler.

The generated COBOL source files include library files from the PostgreSQL installation, so if you installed PostgreSQL in
a location that is not searched by default, you have to add an option such as -I/usr/local/pgsql/include to the compilation
command line.

To link an embedded SQL program, you need to include the libecpg library.

Again, you might have to add an option for library search like -L/usr/local/pgsql/lib to that command line.

If you manage the build process of a larger project using make, it might be convenient to include the following implicit rule
to your makefiles:

ECOBPG = ecobpg

%.cob: %.pco

 $(ECOBPG) $<

The complete syntax of the ecobpg command is detailed in "D.12.1 ecobpg".

Currently, ecobpg does not support multi threading.

D.10 Large Objects
Large objects are not supported by ECOBPG.

If you need to access large objects, use large objects interfaces of libpq instead.

D.11 Embedded SQL Commands
This section describes all SQL commands that are specific to embedded SQL.

Command Description

ALLOCATE DESCRIPTOR Allocate an SQL descriptor area

CONNECT Establish a database connection

DEALLOCATE DESCRIPTOR Deallocate an SQL descriptor area

DECLARE Define a cursor

- 187 -

Command Description

DESCRIBE Obtain information about a prepared statement or result
set

DISCONNECT Terminate a database connection

EXECUTE IMMEDIATE Dynamically prepare and execute a statement

GET DESCRIPTOR Get information from an SQL descriptor area

OPEN Open a dynamic cursor

PREPARE Prepare a statement for execution

SET AUTOCOMMIT Set the autocommit behavior of the current session

SET CONNECTION Select a database connection

SET DESCRIPTOR Set information in an SQL descriptor area

TYPE Define a new data type

VAR Define a variable

WHENEVER Specify the action to be taken when an SQL statement
causes a specific class condition to be raised

 See

Refer to the SQL commands listed in "SQL Commands" under "Reference" in the PostgreSQL Documentation, which can
also be used in embedded SQL, unless stated otherwise.

D.11.1 ALLOCATE DESCRIPTOR

Name

ALLOCATE DESCRIPTOR -- allocate an SQL descriptor area

Synopsis

ALLOCATE DESCRIPTOR name

Description

ALLOCATE DESCRIPTOR allocates a new named SQL descriptor area, which can be used to exchange data between the
PostgreSQL server and the host program.

Descriptor areas should be freed after use using the DEALLOCATE DESCRIPTOR command.

Parameters

name

A name of SQL descriptor. This can be an SQL identifier or a host variable.

Examples

EXEC SQL ALLOCATE DESCRIPTOR mydesc END-EXEC.

Compatibility

ALLOCATE DESCRIPTOR is specified in the SQL standard.

- 188 -

See Also

DEALLOCATE DESCRIPTOR, GET DESCRIPTOR, SET DESCRIPTOR

D.11.2 CONNECT

Name

CONNECT -- establish a database connection

Synopsis

CONNECT TO connection_target [AS connection_name] [USER connection_user_name]

CONNECT TO DEFAULT

CONNECT connection_user_name

DATABASE connection_target

Description

The CONNECT command establishes a connection between the client and the PostgreSQL server.

Parameters

connection_target

connection_target specifies the target server of the connection on one of several forms.

[database_name] [@host] [:port]

Connect over TCP/IP

unix:postgresql://host [:port] / [database_name] [?connection_option]

Connect over Unix-domain sockets

tcp:postgresql://host [:port] / [database_name] [?connection_option]

Connect over TCP/IP

SQL string constant

containing a value in one of the above forms

host variable

host variable of fixed-length string (trailing spaces are ignored) containing a value in one of the above forms

connection_name

An optional identifier for the connection, so that it can be referred to in other commands. This can be an SQL identifier
or a host variable.

connection_user_name

The user name for the database connection.

This parameter can also specify user name and password, using one the forms user_name/password, user_name
IDENTIFIED BY password, or user_name USING password.

User name and password can be SQL identifiers, string constants, or host variables (fixed-length string, trailing spaces
are ignored).

DEFAULT

Use all default connection parameters, as defined by libpq.

- 189 -

Examples

Here a several variants for specifying connection parameters:

EXEC SQL CONNECT TO "connectdb" AS main END-EXEC.

EXEC SQL CONNECT TO "connectdb" AS second END-EXEC.

EXEC SQL CONNECT TO "unix:postgresql://localhost/connectdb" AS main USER connectuser END-

EXEC.

EXEC SQL CONNECT TO 'connectdb' AS main END-EXEC.

EXEC SQL CONNECT TO 'unix:postgresql://localhost/connectdb' AS main USER :user END-EXEC.

EXEC SQL CONNECT TO :dbn AS :idt END-EXEC.

EXEC SQL CONNECT TO :dbn USER connectuser USING :pw END-EXEC.

EXEC SQL CONNECT TO @localhost AS main USER connectdb END-EXEC.

EXEC SQL CONNECT TO REGRESSDB1 as main END-EXEC.

EXEC SQL CONNECT TO connectdb AS :idt END-EXEC.

EXEC SQL CONNECT TO connectdb AS main USER connectuser/connectdb END-EXEC.

EXEC SQL CONNECT TO connectdb AS main END-EXEC.

EXEC SQL CONNECT TO connectdb@localhost AS main END-EXEC.

EXEC SQL CONNECT TO tcp:postgresql://localhost/ USER connectdb END-EXEC.

EXEC SQL CONNECT TO tcp:postgresql://localhost/connectdb USER connectuser IDENTIFIED BY

connectpw END-EXEC.

EXEC SQL CONNECT TO tcp:postgresql://localhost:20/connectdb USER connectuser IDENTIFIED BY

connectpw END-EXEC.

EXEC SQL CONNECT TO unix:postgresql://localhost/ AS main USER connectdb END-EXEC.

EXEC SQL CONNECT TO unix:postgresql://localhost/connectdb AS main USER connectuser END-

EXEC.

EXEC SQL CONNECT TO unix:postgresql://localhost/connectdb USER connectuser IDENTIFIED BY

"connectpw" END-EXEC.

EXEC SQL CONNECT TO unix:postgresql://localhost/connectdb USER connectuser USING

"connectpw" END-EXEC.

EXEC SQL CONNECT TO unix:postgresql://localhost/connectdb?connect_timeout=14 USER

connectuser END-EXEC.

Here is an example program that illustrates the use of host variables to specify connection parameters:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

* database name

 01 DBNAME PIC X(6).

* connection user name

 01 USER PIC X(8).

* connection string

 01 CONNECTION PIC X(38).

 01 VER PIC X(256).

EXEC SQL END DECLARE SECTION END-EXEC.

 MOVE "testdb" TO DBNAME.

 MOVE "testuser" TO USER.

 MOVE "tcp:postgresql://localhost:5432/testdb" TO CONNECTION.

 EXEC SQL CONNECT TO :DBNAME USER :USER END-EXEC.

 EXEC SQL SELECT version() INTO :VER END-EXEC.

 EXEC SQL DISCONNECT END-EXEC.

 DISPLAY "version: " VER.

 EXEC SQL CONNECT TO :CONNECTION USER :USER END-EXEC.

 EXEC SQL SELECT version() INTO :VER END-EXEC.

 EXEC SQL DISCONNECT END-EXEC.

 DISPLAY "version: " VER.

- 190 -

Compatibility

CONNECT is specified in the SQL standard, but the format of the connection parameters is implementation-specific.

See Also

DISCONNECT, SET CONNECTION

D.11.3 DEALLOCATE DESCRIPTOR

Name

DEALLOCATE DESCRIPTOR -- deallocate an SQL descriptor area

Synopsis

DEALLOCATE DESCRIPTOR name

Description

DEALLOCATE DESCRIPTOR deallocates a named SQL descriptor area.

Parameters

name

The name of the descriptor which is going to be deallocated. This can be an SQL identifier or a host variable.

Examples

EXEC SQL DEALLOCATE DESCRIPTOR mydesc END-EXEC.

Compatibility

DEALLOCATE DESCRIPTOR is specified in the SQL standard.

See Also

ALLOCATE DESCRIPTOR, GET DESCRIPTOR, SET DESCRIPTOR

D.11.4 DECLARE

Name

DECLARE -- define a cursor

Synopsis

DECLARE cursor_name [BINARY] [INSENSITIVE] [[NO] SCROLL] CURSOR [{ WITH | WITHOUT }

HOLD] FOR prepared_name

DECLARE cursor_name [BINARY] [INSENSITIVE] [[NO] SCROLL] CURSOR [{ WITH | WITHOUT }

HOLD] FOR query

Description

DECLARE declares a cursor for iterating over the result set of a prepared statement. This command has slightly different
semantics from the direct SQL command DECLARE: Whereas the latter executes a query and prepares the result set for
retrieval, this embedded SQL command merely declares a name as a "loop variable" for iterating over the result set of a query;
the actual execution happens when the cursor is opened with the OPEN command.

- 191 -

Parameters

cursor_name

A cursor name. This can be an SQL identifier or a host variable.

prepared_name

The name of a prepared query, either as an SQL identifier or a host variable.

query

A SELECT or VALUES command which will provide the rows to be returned by the cursor.

For the meaning of the cursor options, see DECLARE.

 See

Refer to "SQL Commands" in "Reference" in the PostgreSQL Documentation for information on the SELECT, VALUES and
DECLARE command.

Examples

Examples declaring a cursor for a query:

EXEC SQL DECLARE C CURSOR FOR SELECT * FROM My_Table END-EXEC.

EXEC SQL DECLARE C CURSOR FOR SELECT Item1 FROM T END-EXEC.

EXEC SQL DECLARE cur1 CURSOR FOR SELECT version() END-EXEC.

An example declaring a cursor for a prepared statement:

EXEC SQL PREPARE stmt1 AS SELECT version() END-EXEC.

EXEC SQL DECLARE cur1 CURSOR FOR stmt1 END-EXEC.

Compatibility

DECLARE is specified in the SQL standard.

See Also

OPEN, CLOSE, DECLARE

 See

Refer to "SQL Commands" in "Reference" in the PostgreSQL Documentation for information on the CLOSE and DECLARE
command.

D.11.5 DESCRIBE

Name

DESCRIBE -- obtain information about a prepared statement or result set

Synopsis

DESCRIBE [OUTPUT] prepared_name USING SQL DESCRIPTOR descriptor_name

DESCRIBE [OUTPUT] prepared_name INTO SQL DESCRIPTOR descriptor_name

- 192 -

Description

DESCRIBE retrieves metadata information about the result columns contained in a prepared statement, without actually
fetching a row.

Parameters

prepared_name

The name of a prepared statement. This can be an SQL identifier or a host variable.

descriptor_name

A descriptor name. It can be an SQL identifier or a host variable.

Examples

EXEC SQL ALLOCATE DESCRIPTOR mydesc END-EXEC.

EXEC SQL PREPARE stmt1 FROM :sql_stmt END-EXEC.

EXEC SQL DESCRIBE stmt1 INTO SQL DESCRIPTOR mydesc END-EXEC.

EXEC SQL GET DESCRIPTOR mydesc VALUE 1 :charvar = NAME END-EXEC.

EXEC SQL DEALLOCATE DESCRIPTOR mydesc END-EXEC.

Compatibility

DESCRIBE is specified in the SQL standard.

See Also

ALLOCATE DESCRIPTOR, GET DESCRIPTOR

D.11.6 DISCONNECT

Name

DISCONNECT -- terminate a database connection

Synopsis

DISCONNECT connection_name

DISCONNECT [CURRENT]

DISCONNECT DEFAULT

DISCONNECT ALL

Description

DISCONNECT closes a connection (or all connections) to the database.

Parameters

connection_name

A database connection name established by the CONNECT command.

CURRENT

Close the "current" connection, which is either the most recently opened connection, or the connection set by the SET
CONNECTION command. This is also the default if no argument is given to the DISCONNECT command.

DEFAULT

Close the default connection.

- 193 -

ALL

Close all open connections.

Examples

 EXEC SQL CONNECT TO testdb AS DEFAULT USER testuser END-EXEC.

 EXEC SQL CONNECT TO testdb AS con1 USER testuser END-EXEC.

 EXEC SQL CONNECT TO testdb AS con2 USER testuser END-EXEC.

 EXEC SQL CONNECT TO testdb AS con3 USER testuser END-EXEC.

* close con3

 EXEC SQL DISCONNECT CURRENT END-EXEC.

* close DEFAULT

 EXEC SQL DISCONNECT DEFAULT END-EXEC.

* close con2 and con1

 EXEC SQL DISCONNECT ALL END-EXEC.

Compatibility

DISCONNECT is specified in the SQL standard.

See Also

CONNECT, SET CONNECTION

D.11.7 EXECUTE IMMEDIATE

Name

EXECUTE IMMEDIATE -- dynamically prepare and execute a statement

Synopsis

EXECUTE IMMEDIATE string

Description

EXECUTE IMMEDIATE immediately prepares and executes a dynamically specified SQL statement, without retrieving
result rows.

Parameters

string

A literal string or a host variable containing the SQL statement to be executed.

Examples

Here is an example that executes an INSERT statement using EXECUTE IMMEDIATE and a host variable named command:

MOVE "INSERT INTO test (name, amount, letter) VALUES ('db: ''r1''', 1, 'f')" TO ARR OF cmd.

COMPUTE LEN OF cmd = FUNCTION STORED-CHAR-LENGTH(ARR OF cmd).

EXEC SQL EXECUTE IMMEDIATE :cmd END-EXEC.

Compatibility

EXECUTE IMMEDIATE is specified in the SQL standard.

D.11.8 GET DESCRIPTOR

- 194 -

Name

GET DESCRIPTOR -- get information from an SQL descriptor area

Synopsis

GET DESCRIPTOR descriptor_name :hostvariable = descriptor_header_item [, ...]

GET DESCRIPTOR descriptor_name VALUE column_number :hostvariable = descriptor_item [, ...]

Description

GET DESCRIPTOR retrieves information about a query result set from an SQL descriptor area and stores it into host
variables. A descriptor area is typically populated using FETCH or SELECT before using this command to transfer the
information into host language variables.

This command has two forms: The first form retrieves descriptor "header" items, which apply to the result set in its entirety.
One example is the row count. The second form, which requires the column number as additional parameter, retrieves
information about a particular column. Examples are the column name and the actual column value.

Parameters

descriptor_name

A descriptor name.

descriptor_header_item

A token identifying which header information item to retrieve. Only COUNT, to get the number of columns in the result
set, is currently supported.

column_number

The number of the column about which information is to be retrieved. The count starts at 1.

descriptor_item

A token identifying which item of information about a column to retrieve. See Section 33.7.1 for a list of supported items.

hostvariable

A host variable that will receive the data retrieved from the descriptor area.

Examples

An example to retrieve the number of columns in a result set:

EXEC SQL GET DESCRIPTOR d :d_count = COUNT END-EXEC.

An example to retrieve a data length in the first column:

EXEC SQL GET DESCRIPTOR d VALUE 1 :d_returned_octet_length = RETURNED_OCTET_LENGTH END-

EXEC.

An example to retrieve the data body of the second column as a string:

EXEC SQL GET DESCRIPTOR d VALUE 2 :d_data = DATA END-EXEC.

Here is an example for a whole procedure of executing SELECT current_database(); and showing the number of columns,
the column data length, and the column data:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

 01 D-COUNT PIC S9(9) COMP-5.

 01 D-DATA PIC X(1024).

- 195 -

 01 D-RETURNED-OCTET-LENGTH PIC S9(9) COMP.

EXEC SQL END DECLARE SECTION END-EXEC.

 EXEC SQL CONNECT TO testdb AS con1 USER testuser END-EXEC.

 EXEC SQL ALLOCATE DESCRIPTOR d END-EXEC.

* Declare, open a cursor, and assign a descriptor to the cursor

 EXEC SQL DECLARE cur CURSOR FOR SELECT current_database() END-EXEC.

 EXEC SQL OPEN cur END-EXEC.

 EXEC SQL FETCH NEXT FROM cur INTO SQL DESCRIPTOR d END-EXEC.

* Get a number of total columns

 EXEC SQL GET DESCRIPTOR d :D-COUNT = COUNT END-EXEC.

 DISPLAY "d_count = " D-COUNT.

* Get length of a returned column

 EXEC SQL GET DESCRIPTOR d VALUE 1 :D-RETURNED-OCTET-LENGTH = RETURNED_OCTET_LENGTH END-

EXEC.

 DISPLAY "d_returned_octet_length = " D-RETURNED-OCTET-LENGTH.

* Fetch the returned column as a string

 EXEC SQL GET DESCRIPTOR d VALUE 1 :D-DATA = DATA END-EXEC.

 DISPLAY "d_data = " D-DATA.

* Closing

 EXEC SQL CLOSE cur END-EXEC.

 EXEC SQL COMMIT END-EXEC.

 EXEC SQL DEALLOCATE DESCRIPTOR d END-EXEC.

 EXEC SQL DISCONNECT ALL END-EXEC.

When the example is executed, the result will look like this:

d_count = +000000001

d_returned_octet_length = +000000006

d_data = testdb

Compatibility

GET DESCRIPTOR is specified in the SQL standard.

See Also

ALLOCATE DESCRIPTOR, SET DESCRIPTOR

D.11.9 OPEN

Name

OPEN -- open a dynamic cursor

Synopsis

OPEN cursor_name

OPEN cursor_name USING value [, ...]

OPEN cursor_name USING SQL DESCRIPTOR descriptor_name

- 196 -

Description

OPEN opens a cursor and optionally binds actual values to the placeholders in the cursor's declaration. The cursor must
previously have been declared with the DECLARE command. The execution of OPEN causes the query to start executing
on the server.

Parameters

cursor_name

The name of the cursor to be opened. This can be an SQL identifier or a host variable.

value

A value to be bound to a placeholder in the cursor. This can be an SQL constant, a host variable, or a host variable with
indicator.

descriptor_name

The name of a descriptor containing values to be bound to the placeholders in the cursor. This can be an SQL identifier
or a host variable.

Examples

EXEC SQL OPEN a END-EXEC.

EXEC SQL OPEN d USING 1, 'test' END-EXEC.

EXEC SQL OPEN c1 USING SQL DESCRIPTOR mydesc END-EXEC.

EXEC SQL OPEN :curname1 END-EXEC.

Compatibility

OPEN is specified in the SQL standard.

See Also

DECLARE, CLOSE

 See

Refer to "SQL Commands" in "Reference" in the PostgreSQL Documentation for information on the CLOSE command.

D.11.10 PREPARE

Name

PREPARE -- prepare a statement for execution

Synopsis

PREPARE name FROM string

Description

PREPARE prepares a statement dynamically specified as a string for execution. This is different from the direct SQL
statement PREPARE, which can also be used in embedded programs. The EXECUTE command is used to execute either kind
of prepared statement.

Parameters

prepared_name

An identifier for the prepared query.

- 197 -

string

A literal string or a host variable containing a preparable statement, one of the SELECT, INSERT, UPDATE, or
DELETE.

Examples

MOVE "SELECT * FROM test1 WHERE a = ? AND b = ?" TO ARR OF STMT.

COMPUTE LEN OF STMT = FUNCTION STORED-CHAR-LENGTH (ARR OF STMT).

EXEC SQL ALLOCATE DESCRIPTOR indesc END-EXEC.

EXEC SQL ALLOCATE DESCRIPTOR outdesc END-EXEC.

EXEC SQL PREPARE foo FROM :STMT END-EXEC.

EXEC SQL EXECUTE foo USING SQL DESCRIPTOR indesc INTO SQL DESCRIPTOR outdesc END-EXEC.

Compatibility

PREPARE is specified in the SQL standard.

See Also

EXECUTE

 See

Refer to "SQL Commands" in "Reference" in the PostgreSQL Documentation for information on the EXECUTE command.

D.11.11 SET AUTOCOMMIT

Name

SET AUTOCOMMIT -- set the autocommit behavior of the current session

Synopsis

SET AUTOCOMMIT { = | TO } { ON | OFF }

Description

SET AUTOCOMMIT sets the autocommit behavior of the current database session. By default, embedded SQL programs
are not in autocommit mode, so COMMIT needs to be issued explicitly when desired. This command can change the session
to autocommit mode, where each individual statement is committed implicitly.

Compatibility

SET AUTOCOMMIT is an extension of PostgreSQL ECOBPG.

D.11.12 SET CONNECTION

Name

SET CONNECTION -- select a database connection

Synopsis

SET CONNECTION [TO | =] connection_name

Description

SET CONNECTION sets the "current" database connection, which is the one that all commands use unless overridden.

- 198 -

Parameters

connection_name

A database connection name established by the CONNECT command.

DEFAULT

Set the connection to the default connection.

Examples

EXEC SQL SET CONNECTION TO con2 END-EXEC.

EXEC SQL SET CONNECTION = con1 END-EXEC.

Compatibility

SET CONNECTION is specified in the SQL standard.

See Also

CONNECT, DISCONNECT

D.11.13 SET DESCRIPTOR

Name

SET DESCRIPTOR -- set information in an SQL descriptor area

Synopsis

SET DESCRIPTOR descriptor_name descriptor_header_item = value [, ...]

SET DESCRIPTOR descriptor_name VALUE number descriptor_item = value [, ...]

Description

SET DESCRIPTOR populates an SQL descriptor area with values. The descriptor area is then typically used to bind
parameters in a prepared query execution.

This command has two forms: The first form applies to the descriptor "header", which is independent of a particular datum.
The second form assigns values to particular datums, identified by number.

Parameters

descriptor_name

A descriptor name.

descriptor_header_item

A token identifying which header information item to set. Only COUNT, to set the number of descriptor items, is currently
supported.

number

The number of the descriptor item to set. The count starts at 1.

descriptor_item

A token identifying which item of information to set in the descriptor. See Section 33.7.1 for a list of supported items.

value

A value to store into the descriptor item. This can be an SQL constant or a host variable.

- 199 -

Examples

EXEC SQL SET DESCRIPTOR indesc COUNT = 1 END-EXEC.

EXEC SQL SET DESCRIPTOR indesc VALUE 1 DATA = 2 END-EXEC.

EXEC SQL SET DESCRIPTOR indesc VALUE 1 DATA = :val1 END-EXEC.

EXEC SQL SET DESCRIPTOR indesc VALUE 2 DATA = 'some string', INDICATOR = :val1 END-EXEC.

EXEC SQL SET DESCRIPTOR indesc VALUE 2 INDICATOR = :val2null, DATA = :val2 END-EXEC.

Compatibility

SET DESCRIPTOR is specified in the SQL standard.

See Also

ALLOCATE DESCRIPTOR, GET DESCRIPTOR

D.11.14 TYPE

Name

TYPE -- define a new data type

Synopsis

TYPE type_name IS ctype

Description

The TYPE command defines a new COBOL type. It is equivalent to putting a typedef into a declare section.

This command is only recognized when ecobpgpg is run with the -c option.

A level number of 01 is automatically added to type_name item. Thus, the level number must not to be specified externally.
To define a group item, a level number needs to be specified to the each subordinate items.

For reasons of internal implementation, "TYPE" must be placed just after "EXEC SQL", without containing newline. For
other place, you can use newline.

Parameters

type_name

The name for the new type. It must be a valid COBOL type name.

ctype

A COBOL type specification (including expression format specification).

Examples

EXEC SQL TYPE CUSTOMER IS

 02 NAME PIC X(50) VARYING.

 02 PHONE PIC S9(9) COMP. END-EXEC.

EXEC SQL TYPE CUST-IND IS

 02 NAME_IND PIC S9(4) COMP.

 02 PHONE_IND PIC S9(4) COMP. END-EXEC.

EXEC SQL TYPE INTARRAY IS

 02 INT PIC S9(9) OCCURS 20. END-EXEC.

EXEC SQL TYPE STR IS PIC X(50) VARYING. END-EXEC.

EXEC SQL TYPE STRING IS PIC X(10). END-EXEC.

- 200 -

Here is an example program that uses EXEC SQL TYPE:

EXEC SQL TYPE TT IS

 02 V PIC X(256) VARYING.

 02 I PIC S9(9) COMP. END-EXEC.

EXEC SQL TYPE TT-IND IS

 02 V-IND PIC S9(4) COMP.

 02 I-IND PIC S9(4) COMP. END-EXEC.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

 01 T TYPE TT.

 01 T-IND TYPE TT-IND.

EXEC SQL END DECLARE SECTION END-EXEC.

 EXEC SQL CONNECT TO testdb AS con1 END-EXEC.

 EXEC SQL SELECT current_database(), 256 INTO :T :T-IND LIMIT 1 END-EXEC.

 DISPLAY "t.v = " ARR OF V OF T.

 DISPLAY "t.i = " I OF T.

 DISPLAY "t_ind.v_ind = " V-IND OF T-IND.

 DISPLAY "t_ind.i_ind = " I-IND OF T-IND.

 EXEC SQL DISCONNECT con1 END-EXEC.

Compatibility

The TYPE command is a PostgreSQL extension.

D.11.15 VAR

Name

VAR— define a variable

Synopsis

VAR varname IS ctype

Description

The VAR command defines a host variable. It is equivalent to an ordinary COBOL variable definition inside a declare section.

When translating, a level number 01 is added. Thus, the level number must not to be specified externally.

To define a group item, a level number needs to be specified to the each subordinate items.

For reasons of internal implementation, "VAR" must be placed just after "EXEC SQL", without containing newline. For other
place, you can use newline.

Parameters

varname

A COBOL variable name.

ctype

A COBOL type specification.

- 201 -

Examples

EXEC SQL VAR VC IS PIC X(10) VARYING. END-EXEC.

EXEC SQL VAR BOOL-VAR IS BOOL. END-EXEC.

Compatibility

The VAR command is a PostgreSQL extension.

D.11.16 WHENEVER

Name

WHENEVER -- specify the action to be taken when an SQL statement causes a specific class condition to be raised

Synopsis

WHENEVER { NOT FOUND | SQLERROR | SQLWARNING } action

Description

Define a behavior which is called on the special cases (Rows not found, SQL warnings or errors) in the result of SQL
execution.

Parameters

See Section "D.7.1 Setting Callbacks" or a description of the parameters.

Examples

EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.

EXEC SQL WHENEVER SQLWARNING SQLPRINT END-EXEC.

EXEC SQL WHENEVER SQLWARNING DO "warn" END-EXEC.

EXEC SQL WHENEVER SQLERROR sqlprint END-EXEC.

EXEC SQL WHENEVER SQLERROR CALL "print2" END-EXEC.

EXEC SQL WHENEVER SQLERROR DO handle_error USING "select" END-EXEC.

EXEC SQL WHENEVER SQLERROR DO sqlnotice USING 0 1 END-EXEC.

EXEC SQL WHENEVER SQLERROR DO "sqlprint" END-EXEC.

EXEC SQL WHENEVER SQLERROR GOTO error_label END-EXEC.

EXEC SQL WHENEVER SQLERROR STOP END-EXEC.

A typical application is the use of WHENEVER NOT FOUND GOTO to handle looping through result sets:

 EXEC SQL CONNECT TO testdb AS con1 END-EXEC.

 EXEC SQL ALLOCATE DESCRIPTOR d END-EXEC.

 EXEC SQL DECLARE cur CURSOR FOR SELECT current_database(), 'hoge', 256 END-EXEC.

 EXEC SQL OPEN cur END-EXEC.

* when end of result set reached, break out of while loop

 EXEC SQL WHENEVER NOT FOUND GOTO NOTFOUND END-EXEC.

 PERFORM NO LIMIT

 EXEC SQL FETCH NEXT FROM cur INTO SQL DESCRIPTOR d END-EXEC

 ...

 END-PERFORM.

 NOTFOUND.

 EXEC SQL CLOSE cur END-EXEC.

 EXEC SQL COMMIT END-EXEC.

- 202 -

 EXEC SQL DEALLOCATE DESCRIPTOR d END-EXEC.

 EXEC SQL DISCONNECT ALL END-EXEC.

Compatibility

WHENEVER is specified in the SQL standard, but most of the actions are PostgreSQL extensions.

D.12 PostgreSQL Client Applications
This part contains reference information for PostgreSQL client applications and utilities. Not all of these commands are of
general utility; some might require special privileges. The common feature of these applications is that they can be run on any
host, independent of where the database server resides.

When specified on the command line, user and database names have their case preserved — the presence of spaces or special
characters might require quoting. Table names and other identifiers do not have their case preserved, except where
documented, and might require quoting.

D.12.1 ecobpg

Name

ecobpg -- embedded SQL COBOL preprocessor

Synopsis

ecobpg [option...] file...

Description

ecobpg is the embedded SQL preprocessor for COBOL programs. It converts COBOL programs with embedded SQL
statements to normal COBOL code by replacing the SQL invocations with special function calls. The output files can then
be processed with any COBOL compiler tool chain.

ecobpg will convert each input file given on the command line to the corresponding COBOL output file. Input files preferably
have the extension .pco, in which case the extension will be replaced by .cob to determine the output file name. If the extension
of the input file is not .pco, then the output file name is computed by appending .cob to the full file name. The output file name
can also be overridden using the -o option.

Options

ecobpg accepts the following command-line arguments:

-c

Automatically generate certain COBOL code from SQL code. Currently, this works for EXEC SQL TYPE.

-I directory

Specify an additional include path, used to find files included via EXEC SQL INCLUDE. Defaults are: (current
directory), /usr/local/include, the PostgreSQL include directory which is defined at compile time (default: /usr/local/
pgsql/include), and /usr/include, in that order.

-o filename

Specifies that ecobpg should write all its output to the given filename.

-f format

Specifies the COBOL code notation. For "format", specify either of the following. If omitted, "fixed" is used.

fixed

Specifies fixed format notation. Up to 72 columns can be specified for area B. Characters in column 73 and beyond
are deleted in the precompiled source.

- 203 -

variable

Specifies variable format notation. Up to 251 columns can be specified for area B. Characters in column 252 and
beyond are deleted in the precompiled source.

-r option

Selects run-time behavior. Option can be one of the following:

prepare

Prepare all statements before using them. Libecpg will keep a cache of prepared statements and reuse a statement if
it gets executed again. If the cache runs full, libecpg will free the least used statement.

questionmarks

Allow question mark as placeholder for compatibility reasons. This used to be the default long ago.

-t

Turn on autocommit of transactions. In this mode, each SQL command is automatically committed unless it is inside an
explicit transaction block. In the default mode, commands are committed only when EXEC SQL COMMIT is issued.

--varchar-with-named-member

When converting VARCHAR host variable, adding name of the variable to members as prefix. Instead of LEN and ARR,
(varname)-ARR and (varname)-LEN will be used.

-E encode

Specify the COBOL source encoding: "UTF8", "SJIS", or "EUC_JP".

If this option is omitted, the encoding is processed based on the locale.

-v

Print additional information including the version and the "include" path.

--version

Print the ecobpg version and exit.

-?
--help

Show help about ecobpg command line arguments, and exit.

Notes

When compiling the preprocessed COBOL code files, the compiler needs to be able to find the library files in the PostgreSQL
include directory.

Programs using COBOL code with embedded SQL have to be linked against the libecpg library, for example using the linker
options.

The value of either of these directories that is appropriate for the installation can be found out using pg_config.

 See

Refer to "pg_config" in "Reference" in the PostgreSQL Documentation.

Examples

If you have an embedded SQL COBOL source file named prog1.pco, you can create an executable program using the
following command:

ecobpg prog1.pco

- 204 -

Appendix E Quantitative Limits
This appendix lists the quantitative limits of FUJITSU Enterprise Postgres.

Table E.1 Length of identifier

Item Limit

Database name Up to 63 bytes (*1) (*2)

Schema name Up to 63 bytes (*1) (*2)

Table name Up to 63 bytes (*1) (*2)

View name Up to 63 bytes (*1) (*2)

Index name Up to 63 bytes (*1) (*2)

Table space name Up to 63 bytes (*1) (*2)

Cursor name Up to 63 bytes (*1) (*2)

Function name Up to 63 bytes (*1) (*2)

Aggregate function name Up to 63 bytes (*1) (*2)

Trigger name Up to 63 bytes (*1) (*2)

Constraint name Up to 63 bytes (*1) (*2)

Conversion name Up to 63 bytes (*1) (*2)

Role name Up to 63 bytes (*1) (*2)

Cast name Up to 63 bytes (*1) (*2)

Collation sequence name Up to 63 bytes (*1) (*2)

Encoding method conversion name Up to 63 bytes (*1) (*2)

Domain name Up to 63 bytes (*1) (*2)

Extension name Up to 63 bytes (*1) (*2)

Operator name Up to 63 bytes (*1) (*2)

Operator class name Up to 63 bytes (*1) (*2)

Operator family name Up to 63 bytes (*1) (*2)

Rewrite rule name Up to 63 bytes (*1) (*2)

Sequence name Up to 63 bytes (*1) (*2)

Text search settings name Up to 63 bytes (*1) (*2)

Text search dictionary name Up to 63 bytes (*1) (*2)

Text search parser name Up to 63 bytes (*1) (*2)

Text search template name Up to 63 bytes (*1) (*2)

Data type name Up to 63 bytes (*1) (*2)

Enumerator type label Up to 63 bytes (*1) (*2)

*1: This is the character string byte length when converted by the server character set character code.

*2: If an identifier that exceeds 63 bytes in length is specified, the excess characters are truncated and it is processed.

Table E.2 Database object

Item Limit

Number of databases Less than 4,294,967,296 (*1)

- 205 -

Item Limit

Number of schemas Less than 4,294,967,296 (*1)

Number of tables Less than 4,294,967,296 (*1)

Number of views Less than 4,294,967,296 (*1)

Number of indexes Less than 4,294,967,296 (*1)

Number of table spaces Less than 4,294,967,296 (*1)

Number of functions Less than 4,294,967,296 (*1)

Number of aggregate functions Less than 4,294,967,296 (*1)

Number of triggers Less than 4,294,967,296 (*1)

Number of constraints Less than 4,294,967,296 (*1)

Number of conversion Less than 4,294,967,296 (*1)

Number of roles Less than 4,294,967,296 (*1)

Number of casts Less than 4,294,967,296 (*1)

Number of collation sequences Less than 4,294,967,296 (*1)

Number of encoding method conversions Less than 4,294,967,296 (*1)

Number of domains Less than 4,294,967,296 (*1)

Number of extensions Less than 4,294,967,296 (*1)

Number of operators Less than 4,294,967,296 (*1)

Number of operator classes Less than 4,294,967,296 (*1)

Number of operator families Less than 4,294,967,296 (*1)

Number of rewrite rules Less than 4,294,967,296 (*1)

Number of sequences Less than 4,294,967,296 (*1)

Number of text search settings Less than 4,294,967,296 (*1)

Number of text search dictionaries Less than 4,294,967,296 (*1)

Number of text search parsers Less than 4,294,967,296 (*1)

Number of text search templates Less than 4,294,967,296 (*1)

Number of data types Less than 4,294,967,296 (*1)

Number of enumerator type labels Less than 4,294,967,296 (*1)

Number of default access privileges defined in the ALTER
DEFAULT PRIVILEGES statement

Less than 4,294,967,296 (*1)

Number of large objects Less than 4,294,967,296 (*1)

Number of index access methods Less than 4,294,967,296 (*1)

*1: The total number of all database objects must be less than 4,294,967,296.

Table E.3 Schema element

Item Limit

Number of columns that can be defined in one table From 250 to 1600 (according to the data
type)

Table row length Up to 400 gigabytes

Number of columns comprising a unique constraint Up to 32 columns

Data length comprising a unique constraint Less than 2,000 bytes (*1) (*2)

- 206 -

Item Limit

Table size Up to one terabyte

Search condition character string length in a trigger definition
statement

Up to 800 megabytes (*1) (*2)

Item size Up to 1 gigabyte

*1: Operation might proceed correctly even if operations are performed with a quantity outside the limits.

*2: This is the character string byte length when converted by the server character set character code.

Table E.4 Index

Item Limit

Number of columns comprising a key (including VCI) Up to 32 columns

Key length (other than VCI) Less than 2,000 bytes (*1)

*1: This is the character string byte length when converted by the server character set character code.

Table E.5 Data types and attributes that can be handled

Item Limit

Character Data length Data types and attributes that can be handled
(*1)

Specification length (n) Up to 10,485,760 characters (*1)

Numeric External decimal expression Up to 131,072 digits before the decimal
point, and up to 16,383 digits after the
decimal point

Internal binary
expression

2 bytes From -32,768 to 32,767

4 bytes From -2,147,483,648 to 2,147,483,647

8 bytes From -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

Internal decimal expression Up to 13,1072 digits before the decimal
point, and up to 16,383 digits after the
decimal point

Floating point
expression

4 bytes From -3.4E+38 to -7.1E-46, 0, or from
7.1E-46 to 3.4E+38

8 bytes From -1.7E+308 to -2.5E-324, 0, or from
2.5E-324 to 1.7E+308

bytea Up to one gigabyte minus 53 bytes

Large object Up to two gigabytes

*1: This is the character string byte length when converted by the server character set character code.

Table E.6 Function definition

Item Limit

Number of arguments that can be specified Up to 100

Number of variable names that can be specified in the
declarations section

No limit

- 207 -

Item Limit

Number of SQL statements or control statements that can be
specified in a function processing implementation

No limit

Table E.7 Data operation statement

Item Limit

Maximum number of connections for one process in an
application (remote access)

4,000 connections

Number of expressions that can be specified in a selection list Up to 1,664

Number of tables that can be specified in a FROM clause No limit

Number of unique expressions that can be specified in a
selection list/DISTINCT clause/ORDER BY clause/GROUP
BY clause within one SELECT statement

Up to 1,664

Number of expressions that can be specified in a GROUP BY
clause

No limit

Number of expressions that can be specified in an ORDER BY
clause

No limit

Number of SELECT statements that can be specified in a
UNION clause/INTERSECT clause/EXCEPT clause

Up to 4,000 (*1)

Number of nestings in joined tables that can be specified in one
view

Up to 4,000 (*1)

Number of functions or operator expressions that can be
specified in one expression

Up to 4,000 (*1)

Number of expressions that can be specified in one row
constructor

Up to 1,664

Number of expressions that can be specified in an UPDATE
statement SET clause

Up to 1,664

Number of expressions that can be specified in one row of a
VALUES list

Up to 1,664

Number of expressions that can be specified in a
RETURNING clause

Up to 1,664

Total expression length that can be specified in the argument
list of one function specification

Up to 800 megabytes (*2)

Number of cursors that can be processed simultaneously by
one session

No limit

Character string length of one SQL statement Up to 800 megabytes (*1) (*3)

Number of input parameter specifications that can be specified
in one dynamic SQL statement

No limit

Number of tokens that can be specified in one SQL statement Up to 10,000

Number of values that can be specified as a list in a WHERE
clause IN syntax

No limit

Number of expressions that can be specified in a USING clause No limit

Number of JOINs that can be specified in a joined table Up to 4,000 (*1)

Number of expressions that can be specified in COALESCE No limit

Number of WHEN clauses that can be specified for CASE in a
simple format or a searched format

No limit

- 208 -

Item Limit

Data size per record that can be updated or inserted by one SQL
statement

Up to one gigabyte minus 53 bytes

Number of objects that can share a lock simultaneously Up to 256,000 (*1)

*1: Operation might proceed correctly even if operations are performed with a quantity outside the limits.

*2: The total number of all database objects must be less than 4,294,967,296.

*3: This is the character string byte length when converted by the server character set character code.

Table E.8 Data sizes

Item Limit

Data size per record for input data files (COPY statement, psql
command \copy meta command)

Up to 800 megabytes (*1)

Data size per record for output data files (COPY statement, psql
command \copy meta command)

Up to 800 megabytes (*1)

*1: Operation might proceed correctly even if operations are performed with a quantity outside the limits.

- 209 -

Appendix F Reference

F.1 JDBC Driver

 See

Refer to the Java API Reference for information on PostgreSQL JDBC driver.

F.2 ODBC Driver

F.2.1 List of Supported APIs
The following table shows the support status of APIs:

Function name Support status

SQLAllocConnect Y

SQLAllocEnv Y

SQLAllocHandle Y

SQLAllocStmt Y

SQLBindCol Y

SQLBindParameter Y

SQLBindParam Y

SQLBrowseConnect Y

SQLBulkOperations Y

SQLCancel Y

SQLCancelHandle N

SQLCloseCursor Y

SQLColAttribute Y

SQLColAttributeW Y

SQLColAttributes Y

SQLColAttributesW Y

SQLColumnPrivileges Y

SQLColumnPrivilegesW Y

SQLColumns Y

SQLColumnsW Y

SQLCompleteAsync N

SQLConnect Y

SQLConnectW Y

SQLCopyDesc Y

SQLDataSources Y

SQLDataSourcesW Y

SQLDescribeCol Y

- 210 -

Function name Support status

SQLDescribeColW Y

SQLDescribeParam Y

SQLDisconnect Y

SQLDriverConnect Y

SQLDriverConnectW Y

SQLDrivers Y

SQLEndTran Y

SQLError Y

SQLErrorW Y

SQLExecDirect Y

SQLExecDirectW Y

SQLExecute Y

SQLExtendedFetch Y

SQLFetch Y

SQLFetchScroll Y

SQLForeignKeys Y

SQLForeignKeysW Y

SQLFreeConnect Y

SQLFreeEnv Y

SQLFreeHandle Y

SQLFreeStmt Y

SQLGetConnectAttr Y

SQLGetConnectAttrW Y

SQLGetConnectOption Y

SQLGetConnectOptionW Y

SQLGetCursorName Y

SQLGetCursorNameW Y

SQLGetData Y

SQLGetDescField Y

SQLGetDescFieldW Y

SQLGetDescRec Y

SQLGetDescRecW Y

SQLGetDiagField Y

SQLGetDiagFieldW Y

SQLGetDiagRec Y

SQLGetDiagRecW Y

SQLGetEnvAttr Y

SQLGetFunctions Y

SQLGetInfo Y

- 211 -

Function name Support status

SQLGetInfoW Y

SQLGetStmtAttr Y

SQLGetStmtAttrW Y

SQLGetStmtOption Y

SQLGetTypeInfo Y

SQLGetTypeInfoW Y

SQLMoreResults Y

SQLNativeSql Y

SQLNativeSqlW Y

SQLNumParams Y

SQLNumResultCols Y

SQLParamData Y

SQLParamOptions Y

SQLPrepare Y

SQLPrepareW Y

SQLPrimaryKeys Y

SQLPrimaryKeysW Y

SQLProcedureColumns Y

SQLProcedureColumnsW Y

SQLProcedures Y

SQLProceduresW Y

SQLPutData Y

SQLRowCount Y

SQLSetConnectAttr Y

SQLSetConnectAttrW Y

SQLSetConnectOption Y

SQLSetConnectOptionW Y

SQLSetCursorName Y

SQLSetCursorNameW Y

SQLSetDescField Y

SQLSetDescRec Y

SQLSetEnvAttr Y

SQLSetParam Y

SQLSetPos Y

SQLSetScrollOptions N

SQLSetStmtAttr Y

SQLSetStmtAttrW Y

SQLSetStmtOption Y

SQLSpecialColumns Y

- 212 -

Function name Support status

SQLSpecialColumnsW Y

SQLStatistics Y

SQLStatisticsW Y

SQLTablePrivileges Y

SQLTablePrivilegesW Y

SQLTables Y

SQLTablesW Y

SQLTransact Y

Y: Supported
N: Not supported

F.3 .NET Data Provider
There are the following ways to develop applications using Fujitsu Npgsql .NET Data Provider:

- Use the Fujitsu Npgsql.NET Data Provider API (classes and methods) directly.

Fujitsu Npgsql .NET Data Provider is created based on the open source software Npgsql. Refer to the "Npgsql - .Net Data
Provider for Postgresql" for information on the APIs:

 See

Refer to the Installation and Setup Guide for Client for the version of Npgsql that Fujitsu Npgsql .NET Data Provider is
based on.

- Use the API of the .NET System.Data.Common namespace

It is possible to create applications that do not rely on a provider when you use the System.Data.Common namespace.
Refer to the "Writing Provider-Independent Code in ADO.NET" in MSDN Library for information.

 See

Refer to the Npgsql API Reference for information on Npgsql API classes and methods.

F.4 C Library (libpq)

 See

Refer to "libpq - C Library" in "Client Interfaces" in the PostgreSQL Documentation.

F.5 Embedded SQL in C

 See

Refer to "ECPG - Embedded SQL in C" in "Client Interfaces" in the PostgreSQL Documentation.

- 213 -

Index
[A]

Additional Notes on each Type Plugin.....................................42

[B]
BIND_VARIABLE.. 99

[C]
CLOSE_CURSOR..100
Code examples for applications...55,67
COLUMN_VALUE... 100
Comparison operator.. 3

[D]
DBMS_OUTPUT... 87
DBMS_SQL... 97
DECODE.. 83
DEFINE_COLUMN...101
DISABLE... 88
DUAL Table... 82

[E]
ENABLE.. 88
Encoding System Settings... 27,48
Entry information of subprogram... 70
Example of specifying the hint clause.................................56,69
EXECUTE.. 101

[F]
FCLOSE... 92
FCLOSE_ALL..93
FCOPY... 93
FETCH_ROWS.. 101
FFLUSH... 93
FGETATTR..93
FOPEN..94
FRENAME... 94

[G]
GET_LINE... 90

[I]
IS_OPEN.. 95

[L]
Language settings... 10,26,48
Libraries to use... 70

[M]
Management of database resources with Server Explorer..........6
Manipulation of database resources with TableAdapter............ 6

[N]
NEW_LINE... 89,95
Notes on automatically generating update-type SQL statements
.. 45
Notes on metadata.. 45
Notes on Server Explorer... 45
Notes on TableAdapter...41

Notes on the Query Builder.. 44
NVL.. 86

[O]
OPEN_CURSOR..102
Outer Join Operator (+).. 80

[P]
PARSE..102
Path of library... 70
Path of the library file...70
Pattern matching... 3
Precompiling example... 56,69
PUT..89,96
PUTF.. 96
PUT_LINE...89,96

[S]
Scan Using a Vertical Clustered Index (VCI)........................ 123
Settings for encrypting communication data for connection to the
server.. 10
String functions and operators..3
SUBSTR... 85

[T]
Type Plugins... 41

[U]
Use the API of the .NET System.Data.Common namespace.213
Use the Fujitsu Npgsql.NET Data Provider API (classes and
methods) directly.. 213
UTL_FILE.. 91

[W]
When setting from outside with environment variables...........49
When specifying in the connection URI...................................49
When using Add-OdbcDsn...22
When using ODBCConf.exe.. 21

- 214 -

	Application Development Guide
	Contents
	Chapter 1 Overview of the Application Development Function
	1.1 Support for National Characters
	1.1.1 Literal
	1.1.2 Data Type
	1.1.3 Functions and Operator

	1.2 Integration with Visual Studio
	1.2.1 Relationship between .NET Framework and FUJITSU Enterprise Postgres
	1.2.2 Automatic Application Generation

	1.3 Compatibility with Oracle Database
	1.4 Application Connection Switch Feature
	1.4.1 Integration with Database Multiplexing

	1.5 Notes on Application Compatibility
	1.5.1 Checking Execution Results
	1.5.2 Referencing System Catalogs
	1.5.3 Using Functions

	Chapter 2 JDBC Driver
	2.1 Development Environment
	2.1.1 Combining with JDK or JRE

	2.2 Setup
	2.2.1 Environment Settings
	2.2.2 Message Language and Encoding System Used by Applications Settings
	2.2.3 Settings for Encrypting Communication Data

	2.3 Connecting to the Database
	2.3.1 Using the DriverManager Class
	2.3.2 Using the PGConnectionPoolDataSource Class
	2.3.3 Using the PGXADataSource Class

	2.4 Application Development
	2.4.1 Relationship between the Application Data Types and Database Data Types
	2.4.2 Statement Caching Feature
	2.4.3 Creating Applications while in Database Multiplexing Mode
	2.4.3.1 Errors when an Application Connection Switch Occurs and Corresponding Actions

	Chapter 3 ODBC Driver
	3.1 Development Environment
	3.2 Setup
	3.2.1 Registering ODBC Drivers
	3.2.2 Registering ODBC Data Sources(for Windows(R))
	3.2.2.1 Registering Using GUI
	3.2.2.2 Registering Using Commands

	3.2.3 Registering ODBC Data Sources(for Linux)
	3.2.4 Message Language and Encoding System Used by Applications Settings

	3.3 Connecting to the Database
	3.4 Application Development
	3.4.1 Compiling Applications (for Windows (R))
	3.4.2 Compiling Applications (for Linux)
	3.4.3 Creating Applications While in Database Multiplexing Mode
	3.4.3.1 Errors when an Application Connection Switch Occurs and Corresponding Actions

	Chapter 4 .NET Data Provider
	4.1 Development Environment
	4.2 Setup
	4.2.1 Setting Up the Visual Studio Integration Add-On
	4.2.2 Setting Up .NET Data Provider
	4.2.3 Setting Up .NET Data Provider Type Plugins
	4.2.4 Setting Up Npgsql for Entity Framework
	4.2.5 Message Language Settings

	4.3 Connecting to the Database
	4.3.1 Using NpgsqlConnection
	4.3.2 Using NpgsqlConnectionStringBuilder
	4.3.3 Using the ProviderFactory Class
	4.3.4 Connection String

	4.4 Application Development
	4.4.1 Data Types
	4.4.2 Relationship between Application Data Types and Database Data Types
	4.4.3 Creating Applications while in Database Multiplexing Mode
	4.4.3.1 Errors when an Application Connection Switch Occurs and Corresponding Actions

	4.4.4 Notes

	4.5 Uninstallation
	4.5.1 Uninstalling Npgsql
	4.5.2 Uninstalling .NET Data Provider Type Plugins
	4.5.3 Uninstalling Npgsql for Entity Framework

	Chapter 5 C Library (libpq)
	5.1 Development Environment
	5.2 Setup
	5.2.1 Environment Settings
	5.2.2 Message Language and Encoding System Used by Applications Settings
	5.2.3 Settings for Encrypting Communication Data

	5.3 Connecting with the Database
	5.4 Application Development
	5.4.1 Compiling Applications
	5.4.2 Creating Applications while in Database Multiplexing Mode
	5.4.2.1 Errors when an Application Connection Switch Occurs and Corresponding Actions

	Chapter 6 Embedded SQL in C
	6.1 Development Environment
	6.2 Setup
	6.2.1 Environment Settings
	6.2.2 Message Language and Encoding System Used by Applications Settings
	6.2.3 Settings for Encrypting Communication Data

	6.3 Connecting with the Database
	6.4 Application Development
	6.4.1 Support for National Character Data Types
	6.4.2 Compiling Applications
	6.4.3 Bulk INSERT
	6.4.4 DECLARE STATEMENT
	6.4.5 Creating Applications while in Database Multiplexing Mode
	6.4.5.1 Errors when an Application Connection Switch Occurs and Corresponding Actions

	6.4.6 Notes

	Chapter 7 Embedded SQL in COBOL
	7.1 Development Environment
	7.2 Setup
	7.2.1 Environment Settings
	7.2.2 Message Language and Encoding System Used by Applications
	7.2.3 Settings for Encrypting Communication Data

	7.3 Connecting with the Database
	7.4 Application Development
	7.4.1 Support for National Character Data Types
	7.4.2 Compiling Applications
	7.4.3 Bulk INSERT
	7.4.4 DECLARE STATEMENT
	7.4.5 Creating Applications while in Database Multiplexing Mode
	7.4.5.1 Errors when an Application Connection Switch Occurs and Corresponding Actions

	Chapter 8 SQL References
	8.1 Expanded Trigger Definition Feature
	8.1.1 CREATE TRIGGER
	8.1.2 How to Define Triggers in pgAdmin

	Chapter 9 Compatibility with Oracle Databases
	9.1 Overview
	9.2 Precautions when Using the Features Compatible with Oracle Databases
	9.2.1 Notes on SUBSTR
	9.2.2 Notes when Integrating with the Interface for Application Development

	9.3 Queries
	9.3.1 Outer Join Operator (+)
	9.3.2 DUAL Table

	9.4 SQL Function Reference
	9.4.1 DECODE
	9.4.2 SUBSTR
	9.4.3 NVL

	9.5 Package Reference
	9.5.1 DBMS_OUTPUT
	9.5.1.1 Description
	9.5.1.2 Example

	9.5.2 UTL_FILE
	9.5.2.1 Registering and Deleting Directories
	9.5.2.2 Description
	9.5.2.3 Example

	9.5.3 DBMS_SQL
	9.5.3.1 Description
	9.5.3.2 Example

	Chapter 10 Application Connection Switch Feature
	10.1 Connection Information for the Application Connection Switch Feature
	10.2 Using the Application Connection Switch Feature
	10.2.1 Using the JDBC Driver
	10.2.2 Using the ODBC Driver
	10.2.3 Using a .NET Data Provider
	10.2.4 Using a Connection Service File
	10.2.5 Using the C Library (libpq)
	10.2.6 Using Embedded SQL
	10.2.7 Using the psql Command

	Chapter 11 Performance Tuning
	11.1 Enhanced Query Plan Stability
	11.1.1 Optimizer Hints
	11.1.2 Locked Statistics

	Chapter 12 Scan Using a Vertical Clustered Index (VCI)
	12.1 Operating Conditions
	12.2 Usage
	12.2.1 Designing
	12.2.2 Checking
	12.2.3 Evaluating

	12.3 Usage Notes

	Appendices
	Appendix A Precautions when Developing Applications
	A.1 Precautions when Using Functions and Operators
	A.1.1 General rules of Functions and Operators
	A.1.2 Errors when Developing Applications that Use Functions and/or Operators

	A.2 Notes when Using Temporary Tables
	A.3 Implicit Data Type Conversions
	A.3.1 Function Argument
	A.3.2 Operators
	A.3.3 Storing Values

	A.4 Notes on Using Index
	A.4.1 SP-GiST Index

	A.5 Notes on Using Multibyte Characters in Definition Names

	Appendix B Conversion Procedures Required due to Differences from Oracle Database
	B.1 Outer Join Operator (Perform Outer Join)
	B.1.1 Comparing with the ^= Comparison Operator

	B.2 DECODE (Compare Values and Return Corresponding Results)
	B.2.1 Comparing Numeric Data of Character String Types and Numeric Characters
	B.2.2 Obtaining Comparison Result from more than 50 Conditional Expressions
	B.2.3 Obtaining Comparison Result from Values with Different Data Types

	B.3 SUBSTR (Extract a String of the Specified Length from Another String)
	B.3.1 Specifying a Value Expression with a Data Type Different from the One that can be Specified for Function Arguments
	B.3.2 Extracting a String with the Specified Format from a Datetime Type Value
	B.3.3 Concatenating a String Value with a NULL value

	B.4 NVL (Replace NULL)
	B.4.1 Obtaining Result from Arguments with Different Data Types
	B.4.2 Operating on Datetime/Numeric, Including Adding Number of Days to a Particular Day
	B.4.3 Calculating INTERVAL Values, Including Adding Periods to a Date

	B.5 DBMS_OUTPUT (Output Messages)
	B.5.1 Outputting Messages Such As Process Progress Status
	B.5.2 Receiving a Return Value from a Procedure (PL/SQL) Block (For GET_LINES)
	B.5.3 Receiving a Return Value from a Procedure (PL/SQL) Block (For GET_LINE)

	B.6 UTL_FILE (Perform File Operation)
	B.6.1 Registering a Directory to Load and Write Text Files
	B.6.2 Checking File Information
	B.6.3 Copying Files
	B.6.4 Moving/Renaming Files

	B.7 DBMS_SQL (Execute Dynamic SQL)
	B.7.1 Searching Using a Cursor

	Appendix C Tables Used by the Features Compatible with Oracle Databases
	C.1 UTL_FILE.UTL_FILE_DIR

	Appendix D ECOBPG - Embedded SQL in COBOL
	D.1 Precautions when Using Functions and Operators
	D.2 Managing Database Connections
	D.2.1 Connecting to the Database Server
	D.2.2 Choosing a Connection
	D.2.3 Closing a Connection

	D.3 Running SQL Commands
	D.3.1 Executing SQL Statements
	D.3.2 Using Cursors
	D.3.3 Managing Transactions
	D.3.4 Prepared Statements

	D.4 Using Host Variables
	D.4.1 Overview
	D.4.2 Declare Sections
	D.4.3 Retrieving Query Results
	D.4.4 Type Mapping
	D.4.5 Handling Nonprimitive SQL Data Types
	D.4.6 Indicators

	D.5 Dynamic SQL
	D.5.1 Executing Statements without a Result Set
	D.5.2 Executing a Statement with Input Parameters
	D.5.3 Executing a Statement with a Result Set

	D.6 Using Descriptor Areas
	D.6.1 Named SQL Descriptor Areas

	D.7 Error Handling
	D.7.1 Setting Callbacks
	D.7.2 sqlca
	D.7.3 SQLSTATE vs. SQLCODE

	D.8 Preprocessor Directives
	D.8.1 Including Files
	D.8.2 The define and undef Directives
	D.8.3 ifdef, ifndef, else, elif, and endif Directives

	D.9 Processing Embedded SQL Programs
	D.10 Large Objects
	D.11 Embedded SQL Commands
	D.11.1 ALLOCATE DESCRIPTOR
	D.11.2 CONNECT
	D.11.3 DEALLOCATE DESCRIPTOR
	D.11.4 DECLARE
	D.11.5 DESCRIBE
	D.11.6 DISCONNECT
	D.11.7 EXECUTE IMMEDIATE
	D.11.8 GET DESCRIPTOR
	D.11.9 OPEN
	D.11.10 PREPARE
	D.11.11 SET AUTOCOMMIT
	D.11.12 SET CONNECTION
	D.11.13 SET DESCRIPTOR
	D.11.14 TYPE
	D.11.15 VAR
	D.11.16 WHENEVER

	D.12 PostgreSQL Client Applications
	D.12.1 ecobpg

	Appendix E Quantitative Limits
	Appendix F Reference
	F.1 JDBC Driver
	F.2 ODBC Driver
	F.2.1 List of Supported APIs

	F.3 .NET Data Provider
	F.4 C Library (libpq)
	F.5 Embedded SQL in C

	Index

