
J2UL-3007-02ENZ0(00)
September 2025

Windows/Linux

Fujitsu
Enterprise Postgres 17 SP2

Knowledge Data
Management Feature
User's Guide

Preface

Purpose of this document

This document describes the knowledge data management features of Fujitsu Enterprise Postgres.

Intended readers

This document is intended for those who use the knowledge data management feature.

To read this document, you need to have the following knowledge:

- Fujitsu Enterprise Postgres

- PostgreSQL

Structure of this document

The structure and content of this manual is shown below.

Chapter 1 Knowledge Data Management Feature

This chapter describes the overview of the knowledge data management feature and examples of how knowledge data can
be used.

Chapter 2 Vector Data Management Feature

This chapter describes the vector data management feature.

Chapter 3 Semantic Text Search and Automatic Vectorization Feature

This chapter describes the semantic text search and the automatic vectorization feature for semantic search.

Chapter 4 Graph Management Feature

This chapter describes the graph management feature.

Export restrictions

Exportation/release of this document may require necessary procedures in accordance with the regulations of your resident
country and/or US export control laws.

Issue date and version

Edition 2.0: September 2025

Edition 1.0: March 2025

Copyright

Copyright 2025 Fujitsu Limited

- i -

Contents
Chapter 1 Knowledge Data Management Feature...1

1.1 Overview of the Knowledge Data Management Feature...1
1.2 Examples of Using Knowledge Data...2

1.2.1 Example of Searching Text Data Based on Semantic Similarity... 3
1.2.2 Example of Searching a Graph Based on Relationships...3

Chapter 2 Vector Data Management Feature.. 5
2.1 Setting Up the Vector Data Management Feature... 5
2.2 Storing and Searching Vector Data... 5
2.3 Protecting Vector Data...5
2.4 Performance Tuning for Similar Search of Vector Data... 5
2.5 Using Vector Data by Applications... 6
2.6 Quantitative Limits.. 6

Chapter 3 Semantic Text Search and Automatic Vectorization Feature.. 7
3.1 Overview of the Semantic Text Search and Automatic Vectorization Feature...7
3.2 Installation of Semantic Text Search and Automatic Vectorization..8

3.2.1 Operating Environment...8
3.2.2 Setup... 8

3.2.2.1 Setting Up pgai.. 8
3.2.2.2 Setting Up pgx_vectorizer... 8
3.2.2.3 Migration from Fujitsu Enterprise Postgres 17 SP1.. 9

3.2.3 Removing..10
3.2.4 Stopping the vectorize scheduler.. 10
3.2.5 Credentials Protection...11

3.2.5.1 Encrypting Credentials.. 11
3.2.5.2 Restrict Access to Credentials... 11

3.3 Preparation for Semantic Text Search... 11
3.3.1 Configuring Embedded Providers (for Workers)... 11
3.3.2 Configuring Embedded Providers (for Semantic Text Search).. 12
3.3.3 Definition of Vectorization...12
3.3.4 Granting Privilege to Execute Functions.. 14

3.4 Storing Vector Data for Semantic Text Search... 14
3.5 Protecting Vector Data for Semantic Text Search...14

3.5.1 Encrypting Vector Data for Semantic Text Search.. 15
3.5.2 Restricting Access to Vector Data for Semantic Text Search.. 15
3.5.3 Recording Access to Vector Data for Semantic Text Search... 17

3.6 Monitoring Vectorization Processing for Semantic Text Search.. 17
3.6.1 Checking the Vectorization Queue... 17
3.6.2 Checking the Status of Vectorization Processing... 18
3.6.3 Checking the Scheduler for Vectorization Processing... 19

3.7 Temporarily Disabling Vectorization Processing for Semantic Text Search.. 19
3.8 Semantic Text Search.. 19
3.9 Changing the Vector Representation Used in Semantic Text Search..20
3.10 Performance Tuning of Semantic Text Search.. 20
3.11 Hybrid Search.. 20
3.12 Improving the Accuracy of Hybrid Search..21

3.12.1 Overview of Hybrid Search Tuning..21
3.12.2 Recording and Deleting Traces of Hybrid Search.. 22
3.12.3 Calculation of Search Accuracy Using External Tools.. 23
3.12.4 Calculation of Search Accuracy in the Database..24

3.12.4.1 Example of Calculating Search Accuracy in a Database...24
3.12.5 Tuning of Hybrid Search.. 25

3.13 Reference... 26
3.13.1 Vectorization Functions..26

3.13.1.1 Defining Vectorization.. 26

- ii -

3.13.1.2 Vectorization Schedule.. 26
3.13.1.3 Vectorizer Management Functions..26

3.13.2 Embedded Provider Management Functions..28
3.13.3 Search Functions...29

3.13.3.1 Semantic Text Search.. 29
3.13.3.2 Hybrid Search.. 29
3.13.3.3 Details of the pgx_hybrid_search Function... 31

3.13.4 Tables/Views Created by Semantic Text Search and Automatic Vectorization Feature... 34
3.13.5 Parameters...37
3.13.6 Evaluation of Knowledge Data Search...37

3.13.6.1 Concept of Evaluation for Knowledge Data Search..37
3.13.6.2 Evaluation Value per Record and Search Accuracy..38
3.13.6.3 Tuning the Combination Method of Hybrid Search.. 39

Chapter 4 Graph Management Feature... 40
4.1 Overview of Graph Management Feature... 40
4.2 Installation of Graph Management Feature... 40

4.2.1 Setting Up the Graph Management Feature... 40
4.2.2 Removing the Graph Management Feature.. 40

4.3 Creating a Graph..40
4.4 Storing Graph Data.. 41
4.5 Protecting Graph Data... 41

4.5.1 Encrypting the Graph..41
4.5.2 Restricting Access to Graph... 42
4.5.3 Recording Access to Graph.. 43

4.6 Searching Graph.. 43
4.7 Adding Labels to Graph...44
4.8 Performance Tuning of Graph Search... 44
4.9 Using Graph Data in Applications...45
4.10 Visualizing Graph Data... 45
4.11 Internal Structure of Graph Data... 45
4.12 Quantitative Limits.. 45
4.13 Reference... 45

- iii -

Chapter 1 Knowledge Data Management Feature
This section describes an overview of the knowledge data management feature and examples of using knowledge data.

1.1 Overview of the Knowledge Data Management Feature
The Knowledge Data Management feature allows you to search based on semantic relationships using vectors and graphs,
and manage those data.

When you use a large language model (LLM) in a retrieval-augmented generation (RAG) approach, you need external
knowledge data to give to LLM. Fujitsu Enterprise Postgres can manage knowledge data in vector and graph formats,
eliminating the need for a dedicated database for each format. You can also use Fujitsu Enterprise Postgres database
multiplexing, access control, data encryption, and other features to securely manage your knowledge data.

In addition to existing searches, the Knowledge Data Management feature enables you to search knowledge data in three
ways:

- Similar search of vector data

Performs a similarity search between the specified vector data and the vector data stored in Fujitsu Enterprise Postgres.

- Searching text data based on semantic similarity

Searches for semantic similarity between the specified text and the text stored in Fujitsu Enterprise Postgres using
embedding in a semantic vector.

When you store text data for semantic search in Fujitsu Enterprise Postgres, a vector (semantic vector) that captures the
semantic similarity of the text data is automatically generated and stored in the database. When searching, the specified
text data is automatically converted to vector data, and semantic search is performed by the vector similarity search.

A hybrid search that combines text semantic similarity search and full-text search can also be utilized.

- Searching graphs based on relationships

A graph is a data structure that represents entities and their relationships as nodes and the edges that connect them. You
can search graphs based on properties and relationships.

Knowledge data can be accessed by executing SQL queries from the application to Fujitsu Enterprise Postgres. You can also
use LangChain, an AI application development framework, to access knowledge data in Fujitsu Enterprise Postgres.

- 1 -

What the knowledge data management feature can do

The Knowledge Data Management feature enables you to:

- Vector data storage and retrieval using the vector data management feature

- Storage of float32, float16, bit vectors, and sparse vectors

- Vector neighbor search by cosine or euclidean distance

- HNSW and IVFFlat vector index

- DiskANN-based vector index suitable for large data sets

- Semantic text search and automatic vectorization

- Automated background vectorization of newly added text data

- Semantic search with automatic query vectorization, consistent with stored vector representation

- Use of external vector embedding models such as Ollama and OpenAI

- Hybrid search combining semantic text search and full-text search

- Graph data storage and retrieval using the graph data management feature

- Storing graphs

- Exploring and updating graphs with openCypher

- Application development support

- LangChain linkage

For access from Python applications using LangChain, refer to the technical documentation available at:

https://www.postgresql.fastware.com/resource-center

1.2 Examples of Using Knowledge Data
Here are some examples of using knowledge data.

- 2 -

1.2.1 Example of Searching Text Data Based on Semantic Similarity
Here is an example of a typical RAG-based application that utilizes vector embedding of text data. Instead of performing
vectorization on the application side, we use the semantic search feature for text data provided by Fujitsu Enterprise Postgres.

1. Creating text data

Use different algorithms and models to extract text from different data in your organization.

2. Storing text data in Fujitsu Enterprise Postgres

Store the text data in Fujitsu Enterprise Postgres. To use the semantic search function in text, declaratively define the
vector representation to be used for the stored textual knowledge data. This automatically creates the vector data
necessary for semantic search.

3. Searching text data

The text semantic search feature returns text that is semantically similar to the text you are searching for. No conversion
to vector representation is required on the application side.

1.2.2 Example of Searching a Graph Based on Relationships
Here is an example of a graph as knowledge data is queried in natural language, and the obtained knowledge is converted into
text for use.

1. Creating graph data

Extract graph data from a variety of data in your organization, such as using a relation extraction model.

2. Storing graph data in Fujitsu Enterprise Postgres

Store the created graph data in Fujitsu Enterprise Postgres. Nodes and edges can be added with Cypher queries using SQL
functions.

3. Searching graph data

To search a graph, you specify a Cypher query to the SQL function. Converts the retrieved properties into a text
representation for use.

- 3 -

- 4 -

Chapter 2 Vector Data Management Feature
This chapter describes the vector data management feature, which provides the storage and search of vector data.

pgvectorscale, described below, is only available on Linux.

2.1 Setting Up the Vector Data Management Feature
Vector data management features are provided by the OSS's pgvector and pgvectorscale.

Refer to "pgvector" in the Installation and Setup Guide for Server to set up pgvector.

If you use the StreamingDiskANN index, refer to "pgvectorscale" in the Installation and Setup Guide for Server to set up
pgvectorscale.

In addition, to use the StreamingDiskANN index, a CPU that supports the AVX2 and FMA instruction sets is required. If you
use a CPU that does not support AVX2 and FMA, an error will occur when creating a StreamingDiskANN index for a table
that stores vector data, or when inserting data into a table with a StreamingDiskANN index created. Refer to the
documentation for each CPU to see if the CPU supports AVX2 and FMA.

2.2 Storing and Searching Vector Data
The vector data management feature provides a new vector data type for storing vector data. Create a table with columns of
vector data type and store vector data.

The similarity search of vector data is performed by calculating the distance between two vector data using the distance
operator added by the vector data management feature, and by the closeness and ordering of the calculated distance.

Example) Vector similarity search

SELECT * FROM items ORDER BY embedding <-> '[3,1,2]' < 5 LIMIT 5;

Creating a vector index on a column of the vector data type causes the vector index to be used when searching for similarities
using the distance operator.

 Point

Similarity searches using vector index are approximate similarity searches.

 See

Refer to the pgvector documentation for information about vector data types, vector operations, distance types between
vectors, and HNSW and IVFFlat vector indexes.

Refer to the pgvectorscale documentation for information about StreamingDiskANN indexes.

2.3 Protecting Vector Data
Vector data is stored as column values in tables, and can be protected by encryption, backup, multiplexing, replication, access
control, and audit settings that specify the table, tablespace, database, or instance in which the vector data is stored.

2.4 Performance Tuning for Similar Search of Vector Data
You can verify that indexes are being used for similar searches of vector data by checking the access plan in the EXPLAIN
statement.

Example) Access Plan for Vector Similar Search

- 5 -

Here is an example using pgvectorscale:

EXPLAIN SELECT * FROM items ORDER BY embedding <=> '[3,1,2]' LIMIT 5;

 QUERY PLAN

Limit (cost=24.75..24.96 rows=5 width=33)

 -> Index Scan using idx_diskann on items (cost=24.75..445.75 rows=10000 width=33)

 Order By: (embedding <=> '[3,1,2]'::vector)

(3 rows)

 See

Each vector index has parameters for tuning. See the documentation for pgvector and pgvectorscale for details.

2.5 Using Vector Data by Applications
If your application wants to work directly with vector data types, introduce a driver for each language in your application. If
no driver is used, the vector data type is returned to the application as a string or array type.

 See

For information on pgvector drivers for various languages, refer to below.

https://github.com/pgvector/pgvector?tab=readme-ov-file#languages

2.6 Quantitative Limits
Refer to the pgvector documentation for the quantitative limits of the data types provided by pgvector.

- 6 -

Chapter 3 Semantic Text Search and Automatic
Vectorization Feature

This chapter describes the semantic text search and the automatic vectorization feature for semantic text search.

3.1 Overview of the Semantic Text Search and Automatic
Vectorization Feature

Semantic text search

The semantic text search is a feature that searches for highly relevant texts based on semantic similarity of the text. This is
achieved by utilizing vector representations that maintain the semantic similarity of text data. It is possible to use hybrid
search that combines semantic text search using vector representation and full-text search based on string matching.

Automatic vectorization feature

The automatic vectorization feature automatically generates and stores vector representations corresponding to the text data
inserted into the table. Use an external service called an embedded provider to generate vector representations of text.

The automatic vectorization feature is executed in the background by defining vectorization for the table to be searched. The
definition of vectorization includes the embedded model that determines the vector representation used for semantic text
search, the method of text segmentation, and the definition of the index.

When a vectorization is defined for table, a corresponding "embedded table" is created. This embedded table stores text
chunks, which are units of the original table's text data divided into chunks, and the corresponding vector data. At the same
time as defining the vectorization, you can define a vector index for the vector data and a full-text search index for the text
chunks. An "embedded view" that combines the original table and the embedded table is also created.

Semantic text search and embedded view

Semantic text search and hybrid search are executed using embedded view as the search target.

When semantic text search and hybrid search are performed for embedded view, the text given as a query is internally
converted into a vector representation, and a similarity search is conducted between the vector representation of the stored
knowledge data.

- 7 -

3.2 Installation of Semantic Text Search and Automatic
Vectorization

3.2.1 Operating Environment
For details about the packages required for this feature to work, refer to the following sections in the Installation and Setup
Guide for Server.

- Required Packages

- Related Software

3.2.2 Setup
Support for semantic text search and automatic vectorization is provided as an extension called pgx_vectorizer.
pgx_vectorizer uses pgai, which relies on pgvector and plpython3u.

Refer to "pgvector" in the Installation and Setup Guide for Server to set up pgvector.

3.2.2.1 Setting Up pgai
As a superuser, execute the following command to set up pgai. "<x>" indicates the product version.

$ su -

cp -r /opt/fsepv<x>server64/OSS/pgai-extension/* /opt/fsepv<x>server64/

 Note

With the Fujitsu Enterprise Postgres server feature installed, plpython3u is configured to use the following.

- For RHEL8, RHEL9: Python 3.9

- For SLES15: Python 3.6

By setting up pgai as above, plpython3u will be configured to use Python 3.11. Therefore, existing PL/Python programs that
use plpython3u may no longer work.

If you want to return plpython3u to the configuration immediately after installation, refer to "3.2.3 Removing".

Configure the following before starting the instance.

Set the <Python package installation destination> to the installation destination listed in the "Related Software" of the
"Installation and Setup Guide for Server".

PYTHONPATH=/opt/fsepv<x>server64/psycopg/python3.11/site-packages/:<Python package

installation destination>:$PYTHONPATH

3.2.2.2 Setting Up pgx_vectorizer
Setting parameters in the postgresql.conf file

Set the following parameters.

- Add pgx_vectorizer to the shared_preload_libraries parameter.

- Specify the maximum parallelism for vectorization processing in the pgx_vectorizer.max_vectorize_worker
parameter.

- Add the following value to the value of the max_worker_processes parameter:

- number of databases to enable pgx_vectorizer functionality +pgx_vectorizer.max_vectorize_worker+2

- 8 -

- If you have changed the installation destination of the Fujitsu Enterprise Postgres Server feature to a location other
than the standard installation destination, specify the following for the pgx_vectorizer.pgai_worker_path parameter.

<Fujitsu Enterprise Postgres server feature Installation Directory>/OSS/pgai-

worker/bin/pgai

Enabling the pgx_vectorizer extension

Execute CREATE EXTENSION for the database that will use this feature.

Adding the CASCADE option will also enable the dependent pgai, pgvector, and plpython3u at the same time.

After CREATE EXTENSION, execute the start_vectorize_scheduler function to start the vectorize scheduler. The
vectorize scheduler is a feature that schedules workers to perform vectorization.

Example) Connecting to the database "rag_database" using the psql command

rag_database=# CREATE EXTENSION IF NOT EXISTS pgx_vectorizer CASCADE;

CREATE EXTENSION

rag_database=# SELECT pgx_vectorizer.start_vectorize_scheduler(); -- Starting the

vectorize scheduler

After enabling the extended features, update the postgresql.conf parameter settings using commands such as pg_ctl
reload.

Create a database user and set up a connection

Create a database user that the automatic vectorization feature will use when converting vectors in the background, and
register it as the user that will convert vectors. Specify a password to use password authentication.

CREATE ROLE <worker_user> PASSWORD `<worker password>` … LOGIN;

SELECT pgx_vectorizer.set_worker_setting('user', 'VECTORIZE_USER', '<worker_user>');

This database user will connect to Fujitsu Enterprise Postgres as an application, so modify the pg_hba.conf file for client
authentication. Set it so that the database user created above can connect to the database that uses the pgx_vectorizer
function from localhost using password authentication.

host <ai-database> <worker_user> 127.0.0.1/32 scram-sha-256

host <ai-database> <worker_user> ::1/128 scram-sha-256

The background vectorization process runs with the privileges of the OS user that starts Fujitsu Enterprise Postgres. The
password required for the above database user to connect to Fujitsu Enterprise Postgres is referenced from the password
file of the OS user that starts Fujitsu Enterprise Postgres. Specify the information required to connect to the vectorization
process. The password file used is in the default location. For details about the password file, refer to "The Password File"
in the PostgreSQL Documentation.

3.2.2.3 Migration from Fujitsu Enterprise Postgres 17 SP1
If you have set up the pgx_vectorizer extension with Fujitsu Enterprise Postgres 17 SP1, you need to upgrade the
pgx_vectorizer extension. Follow the steps below to perform the upgrade.

1. If the database server is running, stop the database server.

$ pg_ctl stop -D <data_directory>

2. Remove pgx_vectorizer from shared_preload_libraries parameter in postgresql.conf.

3. Upgrade the product.

4. Start the database server.

$ pg_ctl start -D <data_directory>

- 9 -

5. Update pgvector, pgai, and pgx_vectorizer.

ALTER EXTENSION vector UPDATE;

ALTER EXTENSION ai UPDATE;

ALTER EXTENSION pgx_vectorizer UPDATE;

6. Add pgx_vectorizer to shared_preload_libraries parameter in postgresql.conf.

7. Restart the database server.

$ pg_ctl restart -D <data_directory>

3.2.3 Removing
1. Connect to the database that is using this feature and execute DROP EXTENSION.

rag_databse=# DROP EXTENSION pgx_vectorizer;

DROP EXTENSION

2. As a superuser, execute the following command to remove pgai. "<x>" indicates the product version.

$ su -

rm /opt/fsepv<x>server64/<Files copied during setup>

 Information

The files copied during setup can be checked below.

find /opt/fsepv<x>server64/OSS/pgai-extension

3. As a superuser, execute the following command to reset the plpython3u configuration to the state it was in immediately
after the server feature was installed. "<x>" indicates the product version.

$ su -

cp /opt/fsepv<x>server64/OSS/pgai-extension/lib/plpython3.9.so /opt/

fsepv<x>server64/lib/plpython3.so

3.2.4 Stopping the vectorize scheduler
To stop vectorize scheduler, refer to pg_stat_activity to check the pid of vectorize scheduler connected to the target database,
and then use the pg_ctl kill TERM <pid> command or the SQL function pg_terminate_backend() to stop it. Because vectorize
scheduler is continuously connected to the database, if you want to delete or change a database that has CREATE
EXTENSIONed pgx_vectorizer, you must stop vectorize scheduler before performing the operation.

You can check the pid of vectorize scheduler connected to the current database by executing the following SQL. The
backend_type of vectorize scheduler includes 'vectorize scheduler'.

SELECT pid FROM pg_stat_activity WHERE datid = (SELECT oid FROM pg_database WHERE datname =

current_database()) AND backend_type LIKE '%vectorize scheduler%';

Below is an example of using pg_terminate_backend().

rag_database=>SELECT pg_terminate_backend(pid) FROM pg_stat_activity WHERE datid = (SELECT

oid FROM pg_database WHERE datname = current_database()) AND backend_type LIKE '%vectorize

scheduler%';

 pg_terminate_backend

 t

(1 row)

- 10 -

3.2.5 Credentials Protection

3.2.5.1 Encrypting Credentials
The pgx_vectorizer.worker_setting_table, which is created when pgx_vectorizer is set up, should be protected because it
stores the API key that the worker performing vectorization uses to access the embedded provider that offers the vector
embedding feature.

To encrypt this table, either encrypt the entire database to which the pgx_vectorizer feature is being added in advance, or
move this table to an encrypted tablespace after adding the extension feature.

Example) When encrypting the entire database for which this feature is enabled

postgres=# CREATE DATABASE rag_database TABLESPACE = encrypted_tablespace;

rag_database=> CREATE EXTENSION pgx_vectorizer;

Example) Moving to encrypted table space

rag_database=> ALTER TABLE pgx_vectorizer.worker_setting_table SET TABLESPACE

encrypted_tablespace;

3.2.5.2 Restrict Access to Credentials
The pgx_vectorizer.worker_setting_table, which stores the credential information, is configured so that only the user who
executed the CREATE EXTENSION of the pgx_vectorizer feature can access it. If you want to allow access by other users,
use the GRANT statement to grant access privilege to those users.

3.3 Preparation for Semantic Text Search
Semantic text search is achieved by similarity search between vectors (semantic vectors) that store the semantic similarity of
text. Therefore, in order to use the semantic text search feature, you need to define vectorization (what kind of vector
representation to use) for the text data to be searched and create vector data.

3.3.1 Configuring Embedded Providers (for Workers)
Before defining a vectorization, you must configure the worker process that will perform the vectorization to access the
embedded provider.

Example) Settings when using Ollama as an embedded provider

rag_database=> SELECT pgx_vectorizer.set_worker_setting('ollama', 'OLLAMA_BASE_URL',

'http://your.ollama.server:11434');

Example) Settings when using OpenAI as an embedded provider

rag_database=> SELECT pgx_vectorizer.set_worker_setting('openai', 'OPENAI_API_KEY', 'your

api key');

 Information

Automatic vectorization is performed by worker processes that are regularly initiated. Additionally, the worker processes are
initiated by Fujitsu Enterprise Postgres.

 Point

In this configuration, credentials for the worker processes to access the embedded provider are stored in an area accessible
by Fujitsu Enterprise Postgres. Because the configuration information for the embedded provider, including the API key, is

- 11 -

stored in the table as plain text, place the table in an encrypted tablespace and protect it with the Fujitsu Enterprise Postgres
transparent data encryption feature. For instructions, refer to "3.2.5 Credentials Protection".

3.3.2 Configuring Embedded Providers (for Semantic Text Search)
To access embedded providers for semantic text search, use the pgai settings. Refer to the pgai documentation for details.

3.3.3 Definition of Vectorization
The definition of vectorization is done with the pgx_vectorizer.pgx_create_vectorizer function provided by pgx_vectorizer.
In the vectorization definition, you can specify information about the table that contains the text data to be vectorized, the
embedding model and dimensions directly related to vector representation, chunking processing, as well as specify the timing
of vectorization as a schedule. If you want to immediately schedule automatic vectorization in the background with Fujitsu
Enterprise Postgres, specify the pgx_vectorizer.schedule_vectorizer function. Additionally, if you want to specify the
vectorization later or manually control the timing of vectorization, specify the ai.scheduling_none function.

When using hybrid search, you can simultaneously define a GIN or GiST index for full-text search used in hybrid search.

When defining vectorization, an embedded view combining a table containing text data and a table containing vector data is
defined. The embedded view is a view that adds the following columns to the original table, and for each piece of text data
in the original table, it holds records divided into chunks.

Column Type Description

embedding_uuid uuid Text chunk ID

chunk_seq integer Sequential number of chunks in a text data

chunk text Text chunk

embedding vector Vector representation of the chunk

 Information

In the following cases, refer to "Definition of full-text search index" to define the index.

- When using an index other than GIN or GiST in hybrid search

- When you have already performed only vectorization and want to add an index for full-text search later

Fujitsu Enterprise Postgres provides pg_trgm and pg_bigm as full-text search features using GIN and GiST indexes. When
using these as full-text search features, set up pg_trgm and pg_bigm in advance. Refer to the following for setup instructions.

- pg_trgm

"Additional Supplied Modules and Extensions" in the PostgreSQL Documentation

- pg_bigm

"pg_bigm" in the Installation and Setup Guide for Server

Example) Definition of vectorization and full-text search index

Below is an example of simultaneously defining a vectorization and a GIN index for full-text search on the knowledge data
table sample_table in text format.

rag_database=> SELECT pgx_vectorizer.pgx_create_vectorizer(

 'sample_table'::regclass,

 destination => 'sample_embeddings',

 embedding => ai.embedding_ollama('all-minilm', 384),

 chunking => ai.chunking_recursive_character_text_splitter('contents'),

 processing => ai.processing_default(batch_size => 200, concurrency => 1),

- 12 -

 scheduling => pgx_vectorizer.schedule_vectorizer(interval '1 hour'),

 indexing => ai.indexing_hnsw(min_rows =>50000, opclass => 'vector_cosine_ops'),

 fulltext_indexing => pgx_vectorizer.pgx_fulltext_indexing_gin(opclass =>

'gin_trgm_ops')

);

pgx_create_vectorizer

 1 - The ID of the created vectorizer

(1 row)

The definition of the full-text search index created by the pgx_create_vectorizer function can be checked in the
pgx_vectorizer.pgx_fulltext_index table.

 Note

Regarding the table containing text subject to vectorization, the following cannot be changed:

- Changes to the schema containing the table

- Changes to the table name

- Changes to the primary key, addition or removal of columns constituting the primary key

- Name and data type of columns included in the primary key

- Name and data type of columns containing text data subject to vectorization

Changing these may cause automatic vectorization or semantic text search to fail. If you want to change them, or if you have
already changed them, you need to redefine the vectorization. In this case, re-vectorization of all text in the target table is
required.

 Point

Users can implement their own full-text search functionality, other than pg_trgm or pg_bigm provided by Fujitsu Enterprise
Postgres, by defining indexes supported by that full-text search functionality and specifying search conditions using its
operators, allowing for hybrid search with custom full-text search capabilities.

Definition of full-text search index

If you use an index other than GIN or GiST index for full-text search, manually define the index for the embedding table
created after defining the vectorization. The name of the embedding table is the name with "_store" added to the end of
the embedding view name specified in the destination argument when defining the vectorization. The column name for
text chunks in the embedding table is chunk.

In the following example, a full-text search index my_iam, other than GIN and GiST, is defined in the embedded table
sample_embeddings2_store.

CREATE INDEX sample_fti ON sample_embeddings2_store (chunk) USING my_iam;

Deleting full-text search index

You can delete the full-text search index by removing the information of the full-text search index from the vectorization
and then executing the DROP INDEX statement.

rag_database=> SELECT

pgx_delete_fulltext_index_config(pgx_vectorizer.get_vectorizer_id(view_name =>

'sample_embeddings');

rag_database=> SELECT indexname FROM pg_indexes where tablename =

'sample_embeddings_store';

indexname

--

- 13 -

sample_embeddings_store_chunk_idx - It is created for the column called "chunk".

rag_database=> DROP INDEX sample_embeddings_store_chunk_idx;

Changing the full-text search index

When changing the full-text search index defined by the pgx_create_vectorizer function, first delete the full-text search
index and then define a new index.

--Deleting full-text search index

rag_database=> SELECT

pgx_delete_fulltext_index_config(pgx_vectorizer.get_vectorizer_id(view_name =>

'sample_embeddings');

rag_database=> SELECT indexname FROM pg_indexes where tablename =

'sample_embeddings_store';

indexname

--

sample_embeddings_store_chunk_idx - It is created for the column called "chunk".

rag_database=> DROP INDEX sample_embeddings_store_chunk_idx;

-- Adding full-text search index

rag_database=> CREATE INDEX ON sample_embeddings_store USING gin (chunk gin_bigm_ops);

3.3.4 Granting Privilege to Execute Functions
When executing the semantic text search and full-text search, you must grant the executing user function privileges that exist
in the ai schema.

GRANT EXECUTE ON ALL FUNCTIONS IN SCHEMA ai TO <user>;

3.4 Storing Vector Data for Semantic Text Search
Vectorization for text semantic text search is performed automatically according to the vectorization definition, and is saved
as a vector data type column value in an internally created table so that the same text does not need to be vectorized again.

Vector data is generated and stored in the background according to the schedule specified when defining the vectorization.
If new text data is added to the table on which the vectorization is defined, the corresponding vector data is automatically
added asynchronously.

 Information

Until the vector data has been created, the text data cannot be used for semantic text search.

3.5 Protecting Vector Data for Semantic Text Search
Vector data for semantic text search is automatically protected by backup, multiplexing, or replication settings that specify
the tablespace, database, or instance in which it is stored.

This section describes the points to keep in mind when using Fujitsu Enterprise Postgres features to protect vector data for
semantic text search.

Vectorization data using the semantic vector embedding model is a conversion that corresponds the semantic similarity
between the original data to the closeness of the distance between vectors. Because there is a risk that the meaning of the
original data can be inferred from vector data, it should be protected at the same level as the original data.

Multiple database objects are created by the vectorization definition. These database objects are the targets of protection.

- 14 -

3.5.1 Encrypting Vector Data for Semantic Text Search
Several database objects are created for semantic text search, and if you want to encrypt these database objects together, place
the entire database in an encryption tablespace.

Example) Encrypting the entire database

postgres=# CREATE DATABASE rag_database TABLESPACE = encrypted_tablespace;

rag_database=> CREATE EXTENSION pgx_vectorizer;

To encrypt database objects for semantic text search when a single tablespace cannot be used per database, temporarily
change the default tablespace to an encrypted tablespace before defining vectorization.

Indexes for vector data are created when the index creation conditions are met. To encrypt an index, change the tablespace
after index creation, or create the index manually without specifying an index in the create_vectorizer function. For
information about tables containing vector data created by this feature, refer to "3.13.4 Tables/Views Created by Semantic
Text Search and Automatic Vectorization Feature".

3.5.2 Restricting Access to Vector Data for Semantic Text Search
Access to vector data is restricted by controlling access to the tables in which the vector data is stored. Access restrictions are
set using the confidentiality management feature of Fujitsu Enterprise Postgres.

The following is an example of using the confidentiality management feature to grant reference rights to the table sample,
which contains text data, and the table sample_embeddings_store, which contains vector data generated by this feature.

1. Refer to the "Confidentiality Management" in the Security Operations Guide to define confidentiality management
role, confidentiality matrix, confidentiality level, and confidentiality group.

2. Grant confidentiality privilege for the table to the confidentiality group.

SELECT pgx_grant_confidential_privilege('rag_matrix', 'level1', 'group1', '{"schema":

["ALL"], "table": ["SELECT"]}');

3. Add tables containing text data and embedded tables as confidentiality object to the confidentiality level.

SELECT pgx_add_object_to_confidential_level ('rag_matrix', 'level1',

'[{

 "type":"table",

 "object":[

 {

 "schema":"public",

 "table":["sample"]

 },

 {

 "schema":"public",

 "table":["sample_embeddings_store"]

 },

]

}]');

4. Add the role to the confidentiality group.

SELECT pgx_add_role_to_confidential_group('rag_matrix', 'group1', '["rag_user"]');

 Information

A vector table contains foreign keys, vector data, and chunks, but it is not necessary to set access privileges on a column-by-
column basis; setting access privileges on a table-by-table basis is sufficient.

- 15 -

The following is an example of setting row-level security for table sample, which contains text data, and table
sample_embeddings_store, which contains vector data generated by this function. In this example, sample and
sample_embeddings_store contain user names in a column called username, and sample_embeddings_store has the primary
key (id) of sample as a foreign key (id). When using row-level security, grant the BYPASSRLS attribute to the user set in
VECTORIZE_USER.

1. Refer to the "Confidentiality Management" in the Security Operations Guide to define confidentiality management
role, confidentiality matrix, confidentiality level, and confidentiality group.

2. Grant confidentiality privilege for the rowset to the confidentiality group.

SELECT pgx_grant_confidential_privilege('rag_matrix', 'level1', 'group1', '{"table":

["SELECT"], "schema": ["ALL"],"rowset":["SELECT"]}');

3. Enable row-level security for the table.

ALTER TABLE sample ENABLE ROW LEVEL SECURITY;

ALTER TABLE sample_embeddings_store ENABLE ROW LEVEL SECURITY;

4. Ensure that the tables on which the target view is based are checked against the privileges of the view's user.

ALTER VIEW sample_embeddings SET (security_invoker = true);

5. Add the ai schema, tables containing text data and embedded tables and embedded views as confidentiality objects to
the confidentiality level.

SELECT pgx_add_object_to_confidential_level ('rag_matrix', 'level1',

'[{

 "type":"schema",

 "object":[

 {"schema":"ai"},

 {"schema":"pgx_vectorizer"}

]

},

{

 "type":"table",

 "object":[

 {

 "schema":"public",

 "table": ["sample", "sample_embeddings_store", "sample_embeddings"]

 },

 {

 "schema":"ai",

 "table": ["vectorizer"]

 }

]

}]');

6. Add the table containing text data and the rowset of the embedded table as confidentiality objects to the confidentiality
level.

SELECT pgx_add_object_to_confidential_level ('rag_matrix', 'level1',

'[{

 "type":"rowset",

 "object":[

 {

 "schema":"public",

 "table": "sample",

 "rowset_name": "rowset1",

 "rowset_expression":[

 {

 "as": "permissive",

 "using": "username = current_user"

 }]

- 16 -

 },

 {

 "schema":"public",

 "table": "sample_embeddings_store",

 "rowset_name": "rowset1",

 "rowset_expression":[

 {

 "as": "permissive",

 "using": "EXISTS (SELECT 1 FROM public.sample WHERE public.sample.id =

public.sample_embeddings_store.id AND public.sample.\"username\" = current_user)"

 }]

 }

]

}]');

7. Add the role to the confidentiality group.

SELECT pgx_add_role_to_confidential_group('rag_matrix', 'group1', '["rag_user"]');

3.5.3 Recording Access to Vector Data for Semantic Text Search
The audit log feature of Fujitsu Enterprise Postgres is used to record access to vector data in the audit log. When specifying
individual database objects to be audited, also specify the tables that store vector data as audit targets.

For information about tables containing vector data created by this feature, refer to "3.13.4 Tables/Views Created by
Semantic Text Search and Automatic Vectorization Feature".

3.6 Monitoring Vectorization Processing for Semantic Text
Search

If you use automatic background vectorization in your database, the corresponding vector data will be automatically changed
when text data is added, updated, or deleted. However, because the generation of vector data for new data is performed
asynchronously, newly added data will not be reflected immediately in semantic similarity search. Also, if you use an external
service to create vector data, you will need to check for errors.

3.6.1 Checking the Vectorization Queue
You can check the number of texts waiting to be vectorized for each vectorization definition by referencing the
ai.vectorizer_status view, and you can check the number for a specific vectorization definition by using the
ai.vectorizer_queue_pending function.

Example) Check the ai.vectorizer_status view

rag_database=> SELECT * FROM ai.vectorizer_status;

-[RECORD 1]-+--------------------------------------

id | 1

source_table | public.sample_table

target_table | public.sample_embeddings_store

view | public.sample_embeddings

pending_items | 1000

disabled | f

Example) Check with the ai.vectorizer_queue_pending function

SELECT ai.vectorizer_queue_pending(pgx_vectorizer.get_vectorizer_id(view_name =>

'sample_embeddings'));

-[RECORD 1]------------+--

vectorizer_queue_pending | 1000

- 17 -

If this value remains at 0 or a low value, you can determine that the vectorization process is on time. If this value tends to
increase beyond the execution interval specified in the schedule or data addition interval, refer to 3.6.2 Checking the Status
of Vectorization Processing" to check whether an error has occurred in the vectorization process, and refer to "3.6.3 Checking
the Scheduler for Vectorization Processing" to check whether the vectorize scheduler is running.

If no errors have occurred, the vectorization processing speed is likely slow compared to the data addition speed. If the load
is temporarily high, start a temporary vectorization process with the pgx_vectorizer.run_vectorize_worker function. If not,
change the schedule with the pgx_vectorizer.alter_vectorizer_schedule function, or change the parallelism or the upper limit
of the amount of data to be processed in one startup with the pgx_vectorizer.alter_vectorizer_processing function.

Example) Changing the execution interval to 5 minutes

SELECT

pgx_vectorizer.alter_vectorizer_schedule(pgx_vectorizer.get_vectorizer_id(view_name =>

'sample_embeddings'), interval '5 m');

Example) When changing the parallelism to 2 and the amount of data to be processed at one time to 200

SELECT

pgx_vectorizer.alter_vectorizer_processing(pgx_vectorizer.get_vectorizer_id(view_name =>

'sample_embeddings'), batch_size => 200, concurrency => 2);

Use a monitoring tool to check the time trend of the number of texts waiting for vectorization. If there is an error in the
parameter value set by set_worker_setting, the vectorization process will not be executed. A message will be output to the
server log, so please check it together with the ai.vectorizer_status view.

3.6.2 Checking the Status of Vectorization Processing
By referring to the ai.vectorizer_errors view, you can check the details of the errors that occurred during the vectorization
process, the time of occurrence, the number of occurrences, etc.

Example) Check the details of the most recent error

rag_database=> SELECT * FROM ai.vectorizer_errors ORDER BY recorded DESC LIMIT 50;

-[RECORD 1]--

id | 1

message | embedding provider failed

details | {"provider": "ollama", "error_reason": "model \"all-minilm\" not fou

nd, try pulling it first"}

recorded | 2025-02-03 06:47:35.958882+00

-[RECORD 2]--

id | 1

message | embedding provider failed

details | {"provider": "ollama", "error_reason": "model \"all-minilm\" not fou

nd, try pulling it first"}

recorded | 2025-02-03 06:47:41.250279+00

Example) Check the number of errors for a vectorization definition

rag_database=> SELECT COUNT(*) FROM ai.vectorizer_errors WHERE id =

pgx_vectorizer.get_vectorizer_id(view_name => 'sample_embeddings');

 count

 20

(1 row)

- 18 -

Check the details of the error and remove the cause. Some embedded providers have a maximum load per period. If an error
occurs because the load exceeds these conditions, use the pgx_vectorizer.alter_vectorizer_schedule or
pgx_vectorizer.alter_vectorizer_processing function to adjust the worker schedule or parallelism.

3.6.3 Checking the Scheduler for Vectorization Processing
You can confirm that the scheduler for vectorization is running in the pg_stat_activity view.

SELECT * FROM pg_stat_activity WHERE backend_type LIKE '%pgx_vectorizer%';

3.7 Temporarily Disabling Vectorization Processing for
Semantic Text Search

The vectorization process of this feature is performed periodically according to the specified schedule. For example, if you
want to temporarily stop vectorization processing to reduce the impact on other work, you can disable vectorization
processing using the ai.disable_vectorizer_schedule function.

rag_database=> SELECT

ai.disable_vectorizer_schedule(pgx_vectorizer.get_vectorizer_id(view_name =>

'sample_embeddings')); -- Specify the ID of the vectorizer you want to disable

To enable it, run the ai.enable_vectorizer_schedule function.

rag_database=> SELECT

ai.enable_vectorizer_schedule(pgx_vectorizer.get_vectorizer_id(view_name =>

'sample_embeddings')); -- Specify the ID of the vectorizer you want to enable

3.8 Semantic Text Search
For text data with vectorization defined, you can use the semantic text search feature to search for semantically similar text.
The pgx_vectorizer.pgx_similarity_search function is used for the semantic text search.

The values in the distance column represent the distance between the text specified as an argument and the chunk, and the
smaller the distance value, the higher the similarity to the text.

Example) Semantic text search

SELECT * FROM pgx_vectorizer.pgx_similarity_search('sample_embeddings'::regclass, 'text

for search', 5,

'<=>');

embedding_uuid | chunk | distance

--+--------------------------+--------------

89A-927B-4271-82A3-6A73E8962B1C | Action items assigned. | 0.1027381927364

8E73B5F2-461A-4622-89A9-C1D364F4E19B | Next steps discussed. | 0.2938471928374

5D39A6E1-B226-4197-9F03-A78B80A509C2 | Timeline adjusted. | 0.5183749128735

2F97C1E5-6E8A-400F-8692-177D77740B6A | Budget approved. | 0.7815239187521

A0EEBC99-9C0B-4EF8-BB6D-6BB9BD380A11 | Status update. | 0.9274618273645

(5 rows)

 Information

The pgx_vectorizer.pgx_similarity_search function specifies the type of distance to be used in vector similarity searches
performed for semantic text searches. If this specification differs from the distance specified when defining an index for
vector data, the index will not be used during the search.

- 19 -

3.9 Changing the Vector Representation Used in Semantic
Text Search

You can have multiple vector representations for the text you want to perform semantic text search on. A vector representation
is associated one-to-one with a vectorization definition, and you can have a different vector representation by defining a new
vectorization. In the vectorization definition, you can specify the embedding model to be used, etc. If you do not need the
previous vector representation, delete the vectorization definition.

Example) Defining a new vectorizer and deleting the old one

rag_database=> SELECT ai.drop_vectorizer(pgx_vectorizer.get_vectorizer_id(view_name =>

'sample_embeddings'), drop_all => true);

rag_database=> SELECT pgx_vectorizer.pgx_create_vectorizer(…);

3.10 Performance Tuning of Semantic Text Search
A semantic text search internally performs a similarity search on vector data. If an index is not specified for the vector data,
all vector data is scanned for each semantic text search. You can check whether an index is being used in a semantic text search
by running pgx_similarity_search_checking_index.

Example) Check if an index is used in a semantic text search

rag_database=> SELECT * FROM

pgx_similarity_search_checking_index('sample_embeddings'::regclass, 'text for search', 5,

'<=>');

ERROR: opclass of index is vector_ip_ops, but the distance_operator is <+>

If search results are output when you execute pgx_similarity_search_checking_index, the index is being used. If the search
ends with an error as shown above, the distance operator specified in the index definition may differ from the distance type
specified in the semantic text search. If the distance type specified in the semantic text search is incorrect, correct the distance
specified. If the distance operator specified in the index definition is incorrect, delete the index and re-create the correct index.

Indexes for vectors explicitly define for the table that stores vectors that are created internally when vectorization is defined.

Example) Changing the vector table index

-- Check and delete the old index name

rag_database=> SELECT indexname FROM pg_indexes where tablename =

'sample_embeddings_store';

 indexname

--

 sample_embeddings_store_pkey

 sample_embeddings_store_id_chunk_seq_key

 sample_embeddings_store_embedding_idx - It is created for a column called embedding.

(3 rows)

rag_database=> DROP INDEX sample_embeddings_store_embedding_idx

-- Add the correct index

rag_database=> CREATE INDEX ON sample_embeddings_store USING hnsw (embedding

vector_l1_ops);

3.11 Hybrid Search
In hybrid search, results from both semantic text search and full-text search are combined, ranked based on scores considering
both results, and the specified number of results are returned in order of highest score.

Hybrid search flow

- 20 -

Hybrid search uses the SQL function pgx_vectorizer.pgx_hybrid_search function. For pgx_vectorizer.pgx_hybrid_search
function, refer to "3.13.3.2 Hybrid Search".

In the following example, a search is performed on the embedded view sample_embeddings created by the vectorization
definition. The union of the top 10 results of full-text search and semantic text search of text is taken, and the top 20 results
based on the final score are returned. In this example, partial match search using the LIKE operator is performed as a full-text
search.

Example) Hybrid search

rag_database=> SELECT context_id, chunk, score FROM pgx_vectorizer.pgx_hybrid_search('

{

 "target_view": "sample_embeddings",

 "search_fusion": "UNION",

 "topN": 20,

 "semantic": {

 "search_text": "text for search",

 "num_result": 10,

 "score_weight": 10

 },

 "fulltext": {

 "search_condition": "chunk LIKE ''%text%''",

 "score_expression": "CASE WHEN chunk LIKE ''%text%'' THEN 1 ELSE 0 END"

 }

}'::JSONB

);

For the return results of the hybrid search, refer to "Hybrid search results".

 Information

Combined search results are ordered using a method called weighted RRF (Reciprocal Rank Fusion). For more details, refer
to "Score calculation".

3.12 Improving the Accuracy of Hybrid Search
Hybrid search is a search method that combines multiple search techniques to leverage their strengths and complement their
weaknesses. To improve search accuracy by combining multiple search techniques, it is necessary to understand the search
accuracy of each technique and choose a combination method accordingly. Below, we will explain how to calculate the search
accuracy of individual search techniques (subqueries) that make up hybrid search.

3.12.1 Overview of Hybrid Search Tuning
The accuracy of search processing can be calculated by preparing pairs of query conditions for evaluation and correct answers
(for example, the search results that should be returned for that query) and comparing the results searched with those query
conditions to the correct answers. The result obtained from hybrid search is only the final search result. Since we cannot know
what the search results of individual subqueries were, their search accuracy cannot be calculated. Therefore, to calculate the
search accuracy of subqueries, we use hybrid search trace information. Trace information is a record of the executed hybrid
search, including the search conditions and search results of each subquery executed internally. The search accuracy can be
calculated from the subquery search results included in the trace information. The accuracy of hybrid search using trace
information can be calculated in the following two ways:

a. Obtain the search results of each subquery recorded as traces and calculate using external evaluation tools.

- 21 -

b. Calculate search accuracy within the database by inputting evaluation results for each text chunk that is a search result
into the database.

When evaluating the entire system, such as RAG-based applications, it is appropriate to use method a., which utilizes external
evaluation tools. On the other hand, if you want to analyze the accuracy of individual subqueries or text chunks in detail
without using tools, method b., which calculates accuracy within the database, is recommended.

Below are the steps for each method.

For basic ideas on the evaluation of knowledge data search, refer to "3.13.6 Evaluation of Knowledge Data Search".

3.12.2 Recording and Deleting Traces of Hybrid Search
To record trace for evaluation queries, a user with trace recording privileges enables the trace and executes a hybrid search
using the evaluation queries. As a result, the trace information is recorded in the table. Trace recording can only be done on
the primary server. Even if a hybrid search with trace enabled is performed on a hot standby server, the trace will not be
recorded. The trace privileges are granted to the database user performing the search by the extension owner using the
pgx_grant_access_on_hybrid_search_trace function. To enable the trace, the database user performing the hybrid search sets
the enable_hybrid_search_trace parameter to on in their session. Regarding the enable_hybrid_search_trace parameter, refer
to "3.13.5 Parameters".

Example) Privilege granted by the owner of the extension

rag_databse=# SELECT pgx_vectorizer.pgx_grant_access_on_hybrid_search_trace('app_user');

Example) Setting session parameters by users performing searches and executing hybrid searches

rag_database=> SET pgx_vectorizer.enable_hybrid_search_trace = 'on';

rag_database=> SELECT * FROM pgx_vectorizer.pgx_hybrid_search(...);

When a trace is recorded, a query ID that identifies the search request required for subsequent operations is issued. The query
ID is returned as a result of a hybrid search, and can also be confirmed by referring to the table where trace information is
recorded (pgx_trace_query table). This table records the database user who executed the hybrid search, the time, and the
application name, allowing you to identify the query ID using these details.

Example) The database user who executes the command refers to the query ID of the hybrid search executed within an hour

rag_database=> SELECT queryid FROM pgx_vectorizer.pgx_trace_query WHERE retrieval_time >=

(current_timestamp - interval '1 hour') ORDER BY retrieval_time;

queryid

- 22 -

 10001

(1 row)

After completing the evaluation and tuning, trace information and evaluation values will be deleted. By deleting records with
the target query ID from the pgx_trace_query table, all related information will be removed.

Example) Delete trace information by specifying the query ID

rag_database=> DELETE FROM pgx_vectorizer.pgx_trace_query WHERE queryid = 10001;

Example) The administrator deletes all trace information older than 30 days

rag_databse=# DELETE FROM pgx_vectorizer.pgx_trace_query WHERE retrieval_time <=

(current_timestamp - interval '30 days') ;

 Information

The trace information includes the search conditions and the knowledge data itself as search results, and is recorded in a
common table within the database. Privileges are set so that only the database users and administrators who executed the
search process can refer to, update, and delete that trace information.

3.12.3 Calculation of Search Accuracy Using External Tools
When calculating the search accuracy of subqueries using external tools, the search results of each subquery are obtained
from trace information.

To retrieve the search results of a subquery, execute the pgx_list_search_results function by specifying the query ID and the
type of subquery. When executed, a set of text chunks is returned in descending order of score, in the same format as the hybrid
search results.

Example) Retrieve the search results of the full-text search subquery with query ID 10001

rag_database=> SELECT pgx_vectorizer.pgx_list_search_results(queryid => 10001,

subquery_type => 'fulltext');

As a result, by providing the search results of subqueries for evaluation queries and the correct answers corresponding to
evaluation queries to the evaluation tool, the search accuracy of subqueries can be calculated.

- 23 -

3.12.4 Calculation of Search Accuracy in the Database
The calculation of search accuracy within a database consists of two major steps: "the calculation of evaluation values for
each text chunk in the search results" and "the calculation of search accuracy based on those evaluation values".

Calculation of evaluation values for each text chunk in the search results

Use the pgx_list_contexts function to extract the text chunks returned by the hybrid search executed and any of its constituent
subqueries.

Example) Extract the text chunk returned by the hybrid search with query ID 10001 and any of the subqueries

rag_database=> SELECT pgx_vectorizer.pgx_list_contexts(queryid => 10001);

Match the extracted text chunks with the correct answers for the evaluation queries, calculate the evaluation values for each,
and input them into the evaluation value table (pgx_context_metrics table). To input the evaluation values, use the UPDATE
statement on the pgx_context_metrics table. For an example of using the UPDATE statement, refer to "3.12.4.1 Example of
Calculating Search Accuracy in a Database". The evaluation values can be stored in JSON format to allow calculation of
search accuracy using any metric.

Calculation of search accuracy based on evaluation value

The text chunk of the search result from the subquery and its evaluation value can be referenced using the
pgx_list_search_result_metrics function. This can be used to calculate search accuracy.

Example) Refer to the search results of full-text search and their evaluation values

rag_database=> SELECT pgx_vectorizer.pgx_list_search_result_metrics(queryid => 10001,

subquery_type => 'fulltext');

3.12.4.1 Example of Calculating Search Accuracy in a Database
Explain an example of calculating search accuracy.

First, store the evaluation value in the pgx_context_metrics table. Here, input the evaluation value into the
relevance_indicator in JSON format.

{

 "relevance_indicator": 1

}

- 24 -

The evaluation value is set to 1 if the context IDs of the search results are 'AAAA', 'BBBB', or 'DDDD', indicating relevance
to the search criteria, and 0 if they are not relevant. In this case, an UPDATE statement is executed on the
pgx_context_metrics table using queryid as the key, and the evaluation values for all text chunks are input collectively.

Example) Input of evaluation value using the UPDATE statement

rag_database=> UPDATE pgx_vectorizer.pgx_context_metrics

SET context_metrics = jsonb_set(

 context_metrics,

 '{relevance_indicator}',

 CASE

 WHEN context_id IN ('AAAA', 'BBBB', 'DDDD') THEN '1'::jsonb ELSE '0'::jsonb

 END

)

WHERE queryid = 10001;

Next, refer to the search results of subqueries that include evaluation values and calculate the search accuracy for each
subquery.

Search accuracy is calculated using a search accuracy metric called precision@k. precision@k is a metric that represents the
precision when focusing on the top k search results, and can be calculated using the following formula.

Below, the top 10 search precision (precision@10) for semantic text search is calculated using the relevance_indicator. The
same can be calculated for full-text search.

rag_database=> SELECT

SUM((context_metrics ->> 'relevance_indicator'):: integer)::float / COUNT(*) AS

precision_at_10

FROM(

 SELECT context_metrics FROM

 pgx_vectorizer.pgx_list_search_result_metrics(queryid => 10001, subquery_type =>

'semantic')

 ORDER BY score DESC LIMIT 10

);

3.12.5 Tuning of Hybrid Search
Tune hybrid search based on calculated search accuracy.

To reduce application modifications due to changes in hybrid search parameters, it is useful to create search functions for each
application as user-defined functions.

Below is an example of defining a SQL function that only takes the string you want to search as input. By defining such a
function, you can change the topN parameter and score_weight parameter on the database server side.

rag_database=> CREATE OR REPLACE FUNCTION mysearch(in text, in text, out uuid, out text,

out float8)

AS $$

SELECT context_id, chunk, score FROM pgx_vectorizer.pgx_hybrid_search(

jsonb_set(

 jsonb_set('{

 "target_view": "sample_embeddings",

 "search_fusion": "UNION",

 "topN": 20,

 "semantic": {

 "num_result": 10,

 "score_weight": 10

 },

 "fulltext": {

- 25 -

 "score_expression": "1"

 }}'::jsonb,

 '{semantic, search_text}', ('"' || $1 || '"')::jsonb),

'{fulltext, search_text}', ('"' || $2 || '"')::jsonb)

)

$$ LANGUAGE SQL

3.13 Reference

3.13.1 Vectorization Functions

3.13.1.1 Defining Vectorization
For the parameters to specify in the definition of vectorization,refer to the pgai documentation. If you want to perform
vectorization within the database, you must specify pgx_vectorizer.schedule_vectorizer as the scheduling.

3.13.1.2 Vectorization Schedule
You can generate vector data from text data in the following ways.

- Manually start vectorization processing

- Perform vectorization processing periodically within the database

The timing of vectorization is determined by the schedule specified when defining vectorization. If schedule_none is
specified, periodic vectorization will not be performed. To perform vectorization at a specified time, run the
run_vectorize_worker function. If schedule_vectorizer is specified, periodic vectorization will be performed within the
database.

Automatic vectorization can be disabled with the ai.disable_vectorizer_schedule function. It can also be re-enabled with the
ai.enable_vectorizer_schedule function.

3.13.1.3 Vectorizer Management Functions
The following functions are provided to use for vectorization feature.

Function Return type Description

pgx_create_vectorizer([Arguments that can be
specified with ai.create_vectorizer],
fulltext_indexing => jsonb)

integer It is used to automatically define
full-text search indexes for
vectorization and chunks.
The ID of the created vectorizer will
be returned.
In addition to the arguments that can
be specified for ai.create_vectorizer,
specify the definition of the full-text
search index
(pgx_fulltext_indexing_gin() or
pgx_fulltext_indexing_gist()).
fulltext_indexing is optional when
only defining vectorization and
when using full-text search indexes
other than GiST or GIN.
If omitted, a full-text search index
will not be created.

pgx_fulltext_indexing_gin(target_column text,
fastupdate boolean, gin_pending_list_limit
integer, opclass text, min_rows integer,
create_when_queue_empty boolean)

jsonb It is used when creating a full-text
search index as GIN.
The value specified for
fulltext_indexing in

- 26 -

Function Return type Description

pgx_create_vectorizer will be
returned.
target_column is used when using
expression indexes or covering
indexes.
The column name for text chunks is
chunk, and the default value for
target_column is chunk.
Specify the operator class to use in
opclass.
min_rows specifies the threshold for
creating an index. The default is
100000. A full-text search index is
created when the number of records
in the embedded table exceeds this
threshold.
create_when_queue_empty is a
parameter that specifies the timing
for creating a full-text search index.
The default is true, and the full-text
search index is created after the
vector conversion is completed.
Other specifiable parameters refer to
index storage parameters.

pgx_fulltext_indexing_gist(target_column text,
fillfactor integer, buffering text, opclass text,
min_rows integer, create_when_queue_empty
boolean)

jsonb It is used when creating a GIST as a
full-text search index.
The value specified for
fulltext_indexing in
pgx_create_vectorizer will be
returned.
Specify the operator class to use in
opclass.
The settings for target_column,
min_rows, and
create_when_queue_empty are the
same as those of
pgx_fulltext_indexing_gin.
Other specifiable parameters refer to
index storage parameters.

pgx_delete_fulltext_index_config(vectorizer_id
integer)

void It is used when deleting the vector
transformation defined by
pgx_create_vectorizer.

Delete information related to full-
text search of vectorization created
by the pgx_create_vectorizer
function.

get_vectorizer_id(view_name
pg_catalog.pg_regclass)

integer Returns the ID of the vectorization
definition that corresponds to the
specified embedded view.

schedule_vectorizer(schedule_interval interval) json Specify the interval for the
vectorization process in
schedule_interval.
This function returns a JSON to be
specified in the scheduling argument

- 27 -

Function Return type Description

of the create_vectorizer function.
If schedule_interval is not specified,
10 minutes will be specified.

alter_vectorizer_processing(vectorizer_id
integer, batch_size integer, concurrency integer)

void Changes the amount of data to be
converted at one time and the worker
multiplicity for the vectorization
definition with the id specified in
vectorizer_id.

alter_vectorizer_schedule(vectorizer_id integer,
schedule_interval interval)

void Changes the interval for the
vectorization process for the
vectorization definition with the id
specified in vectorizer_id.
If schedule_interval is not specified,
5 minutes will be specified.

run_vectorize_worker(vectorizer_id integer) integer Immediately starts the vectorization
process for the vectorization
definition with the ID specified in
vectorizer_id, and starts the
vectorization process in the
background.
Returns the PID of the started
process.

start_vectorize_scheduler(void) void This will start the vectorize
scheduler that connects to the
database where this SQL function
was executed.
If the vectorize scheduler is already
running, an error will occur.

 See

For information about the arguments that can be specified with ai.create_vectorizer, refer to the pgai documentation.

3.13.2 Embedded Provider Management Functions
The following functions are provided to set and reference parameters of the embedded provider.

Function Return type Description

get_worker_setting(type text, param text) text Specify a combination of type and
parameter (param) to get the value
set for that parameter. Only the user
who executed CREATE
EXTENSION can execute this
command.

set_worker_setting(type text, param text, value
text)

void Specify the combination of type and
parameter (param), and set the value
(value) for that parameter. Only the
user who executed CREATE
EXTENSION can execute this
command.

The possible embedded provider names and parameters are:

- 28 -

type param Description

openai OPENAI_API_KEY OpenAI API key value

voyage VOYAGE_API_KEY VoyageAI API key value

ollama OLLAMA_BASE_URL Ollama API base url

user VECTORIZE_USER Username to connect to the
database the worker that performs
the vectorization.

3.13.3 Search Functions

3.13.3.1 Semantic Text Search
The following functions are provided for semantic text search.

Function Return

type
Description

pgx_similarity_search(view pg_catalog.regclass, query
text, num_result integer defaut 5, distance_operator text
default '<=>', OUT embedding_uuid uuid, OUT chunk
text, OUT distance float8);

SETOF
record

Searches the embedding view
specified in view to obtain text
similar to the text specified in
query.

You can display results up to the
number specified in num_result.

You can specify the distance
calculation method using
distance_operator.

pgx_similarity_search_checking_index(view
pg_catalog.regclass, query text, num_result integer
defaut 5, distance_operator text default '<=>', OUT
embedding_uuid uuid, OUT chunk text, OUT distance
float8);

SETOF
record

An error occurs if the index
operator defined in the embedding
column of the table that references
the view does not match the
operator specified in
distance_operator.

Other than the above, it is the same
as the pgx_similarity_search
function.

3.13.3.2 Hybrid Search
The following functions are provided for hybrid search.

Function Return

type
Description

pgx_hybrid_search(query jsonb, OUT queryid bigint,
OUT context_id uuid, OUT chunk text, OUT score
float8)

SETOF
record

Search the specified embedded
view and retrieve the relevant text.

For the return value, refer to
"3.13.3.3 Details of the
pgx_hybrid_search Function".

For query details, refer to "Hybrid
search results".

pgx_list_search_results(queryid bigint, subquery_type
text)

SETOF
record

If trace information for the
specified query ID is recorded, it
returns the search results. If

- 29 -

Function Return
type

Description

subquery_type is not specified, it
returns the results of a hybrid
search. If subquery_type is
semantic or fulltext, it returns the
results of semantic text search or
full-text search conducted
internally, respectively.

pgx_list_search_result_metrics(queryid bigint,
subquery_type text)

SETOF
record

Returns search results along with
the evaluation value of the text
chunk. Other specifications follow
the pgx_list_search_results
function.

pgx_list_contexts(queryid bigint) SETOF
record

If trace information for the
specified query ID is recorded, it
extracts and returns a list of text
chunks returned as search results
in either hybrid search processing
or subqueries executed internally.
The extracted list of text chunks is
inserted into the evaluation value
table.

pgx_hybrid_search_trace_size() bigint Return the size of the trace
information and evaluation value
table in bytes.

pgx_grant_access_on_hybrid_search_trace(role name) None Grant the necessary access rights
to the role for recording and
evaluating trace information.

pgx_revoke_access_on_hybrid_search_trace(role name) None Revoke the access rights
necessary for recording and
evaluating trace information
assigned to the role.

The pgx_list_search_results function returns a set of records of the following type, in descending order of score.

Column Type Description

queryid bigint Quiry ID for hybrid search feature.

context_id uuid Identifier of the returned text chunk.
Unique within the embedded view.

chunk text Returned text chunk.

score real Hybrid search score.
A higher score indicates a better match with the conditions.

The pgx_list_search_results_metrics function returns a set of records of the following type, in descending order of score.

Column Type Description

queryid bigint Quiry ID for hybrid search feature.

context_id uuid Identifier of the returned text chunk.
Unique within the embedded view.

- 30 -

Column Type Description

chunk text Returned text chunk.

score real Hybrid search score.
A higher score indicates a better match with the conditions.

metrics jsonb Evaluation value for each input text chunk.

The pgx_list_contexts function returns a set of records of the following type, in descending order of score.

Column Type Description

queryid bigint Quiry ID for hybrid search feature.

context_id uuid Identifier of the returned text chunk.
Unique within the embedded view.

chunk text Returned text chunk.

3.13.3.3 Details of the pgx_hybrid_search Function

query argument

Specify search conditions in JSON format for the query argument. Specify the following for each key.

Key JSON format Deccription

target_view string Embedded view to be searched.
Interpreted as pg_catalog.regclass.
Cannot be omitted.

search_fusion string How to combine semantic text search and full-
text search.
The default is "UNION".
"UNION": Returns the union of each search
result.
"INTERSECT": Returns the intersection of
each search result.
"TEXT_ONLY": Returns the intersection with
all results of the full-text search.
"VECTOR_ONLY": Returns the intersection
with all results of the semantic text search.
"MINUS_TEXT": Returns the results of the
semantic text search excluding the intersection.
"MINUS_VECTOR": Returns the results of the
full-text search excluding the intersection.

rrf_k number Weighted RRF's weight.
When a floating-point type is specified, the
decimal part is truncated.
The default is 60.

topN number Maximum number of results returned from
hybrid search.
When a floating-point type is specified, an error
occurs.
The default is 20.

semantic.search_text string Text to search with semantic text search.
Cannot be omitted.

semantic.distance_operator string Distance operator in vector comparison.

- 31 -

Key JSON format Deccription

The default is "<=>".

semantic.num_result number Maximum number of items to be retrieved by
semantic text search.
When a floating-point type is specified, an error
occurs.
If omitted, it is calculated based on topN. If the
combination method is "UNION", it is half of
topN, otherwise it is the same as topN.

semantic.score_weight number Relative weighting (importance) of semantic
text search.
When a floating-point type is specified, the
decimal part is truncated.
The default is 1.

fulltext.search_condition string Full-text search condition (an expression that
returns a boolean value specified in the WHERE
clause).
The name of the column targeted for full-text
search in the embedded view is chunk. Refer to
the "3.3.3 Definition of Vectorization" for the
definition of the embedded view.
Cannot be omitted.

fulltext.num_result number Maximum number of items to be retrieved by
full-text search.
When a floating-point type is specified, an error
occurs.
If omitted, it is calculated in the same way as
semantic.num_result.

fulltext.score_weight number Relative weight (importance) of full-text
search.
When a floating-point type is specified, the
decimal part is truncated.
The default is 1.

fulltext.score_expression string An expression that returns a floating-point score
for full-text search.
You can refer to tableoid and ctid.
It cannot be omitted.

 See

For the function used in calculating scores in full-text search, refer to "Full Text Search" in the PostgreSQL Documentation.

 Information

You can specify a matching operator for full-text search as a condition for full-text search. Specify the operator supported by
the full-text search index defined in the table to be searched. The search text for full-text search must be specified in the pattern
required by the matching operator.

Example) Query argument of the pgx_hybrid_search function

{

 "target_view": "sample_embeddings",

 "search_fusion": "UNION",

- 32 -

 "topN": 20,

 "semantic": {

 "search_text": "text for search",

 "distance_operator": "<=>",

 "num_result": 10,

 "score_weight": 1

 },

 "fulltext": {

 "search_condition": "chunk @@ websearch_to_tsquery('search text')",

 "num_result": 10,

 "score_weight": 1,

 "score_expression": "ts_rank_cd(to_tsvector(chunk), websearch_to_tsquery('search

text'))"

 }

}

The search conditions specified by the query argument

The search conditions specified by the query argument correspond to the following flow. (This flow is for explaining the
meaning of the search process and is not the same as the actual access plan.)

- Full-text search: Perform a full-text search based on the conditions specified in fulltext.search_condition.

- Full-text search score calculation: Perform score calculation using fulltext.score_expression. If not specified, full-text
search will result in an error.

- Full-text search ranking & topN: Rank the results in order of highest score. Only the number of search results specified
by semantic.num_result from the top will be adopted, and the rest will be discarded.

- Semantic text search: Perform semantic text search based on vector similarity search using semantic.search_text and
semantic.distance_operator.

- Semantic text search ranking & topN: Rank results in order of smallest distance from vector similarity search results.
Only the number of search results specified by semantic.num_result from the top will be adopted, and the rest will be
discarded.

- Integration: Integrate the results of full-text search and semantic text search according to the method specified in
search_fusion.

- Ranking: Calculate scores based on the ranks of full-text search and semantic text search and assign final ranks. Use
fulltext.score_weight, semantic.score_weight and rrf_k.

- topN: Return only the specified number of results from the top based on the final rank.

Score calculation

The score of the integrated result of multiple ranked results is calculated using a method called weighted RRF (Reciprocal
Rank Fusion). Unweighted RRF considers the reciprocal of the rank of each search method as the score and takes the sum of
multiple search methods as the final score. The final rank is determined based on that score. Weighted RRF calculates the sum
of multiple search methods by multiplying each score by the weight for each search method as a coefficient.

The method for calculating the score WRRF(d) using weighted RRF for a certain search result d is shown below. i represents
the search method, and the sum of scores for all search methods is obtained.

- 33 -

The value of k can be changed with the rrf_k parameter, and the default is 60. The smaller this parameter is, the greater the
impact of differences in the original rank.

The rank (ranki(d)) for search results not returned by one of the search methods is considered a sufficiently large value
(considered to have no impact on the final score).

Hybrid search results

The pgx_hybrid_search function returns a set of records of the following type.

Column Type Description

queryid bigint Query ID of the hybrid search feature used to refer to trace information.
A valid value will be returned if trace information is recorded. Otherwise,
0 will be returned.

context_id uuid Identifier of the returned text chunk.
Unique within the embedded view.

chunk text Returned text chunk.

score real Hybrid search score.
A higher score indicates a better match with the conditions.

3.13.4 Tables/Views Created by Semantic Text Search and
Automatic Vectorization Feature

For information about the tables and views that pgai creates, refer to the pgai documentation.

pgx_vectorizer creates the following tables.

pgx_vectorizer.worker_setting_table table

Stores information about the parameters used by the embedded provider.

Column Type Constraint Description

type text PRIMARY KEY The type of parameter to set.

The name of the embedded
provider or user

parameter text PRIMARY KEY Parameter name

value text NOT NULL Value to set for the parameter

pgx_vectorizer.pgx_fulltext_index table

The pgx_fulltext_index table stores the definition information of the full-text search index created by the
pgx_create_vectorizer function.

Column Type Reference

destination
Description

vectorizerid integer ai.vectorizer.id Vectorization identifier

config jsonb Definition information of full-
text search index.

- 34 -

Column Type Reference
destination

Description

Configurable values are the
return values of the
pgx_fulltext_indexing_gin
function or the
pgx_fulltext_indexing_gist
function.

pgx_vectorizer.pgx_trace_query table

Provides information on hybrid search where trace information is recorded.

When a hybrid search is performed with tracing enabled, one record is inserted.

Deleting records from this table also deletes records from the pgx_trace_subquery table, pgx_trace_results table, and
pgx_context_metrics table with the same queryid.

Column Type Description

queryid bigint Hybrid search ID

retrieval_time timestamp with
timezone

Time when hybrid search was conducted

retrieval_user oid Database user who performed the hybrid search

application_name text Application name that issued the hybrid search. The
value of application_name specified

query jsonb Search criteria for hybrid search

pgx_vectorizer.pgx_trace_subquery table

Provides information about the subqueries for hybrid searches where trace information is recorded.

When a hybrid search is performed with tracing enabled, multiple records are inserted for each subquery.

Column Type Description

queryid bigint Hybrid search ID

subquery_seq smallint Serial number of subquery conducted within a
hybrid search(A serial number closed in a certain
hybrid search process)

subquery_type text Types of subqueries

'-' : Overall hybrid search (main query)

'semantic' : Semantic text search

'fulltext' : Full-text search

subquery_text text Content of the executed subquery (SQL statement)

pgx_vectorizer.pgx_trace_results table

Provides information about the text chunks returned by each search process of hybrid search and subquery.

When performing a hybrid search with trace information enabled, multiple records corresponding to the text chunks of the
search results of each subquery are inserted.

Column Type Description

queryid bigint Hybrid search ID

- 35 -

Column Type Description

subquery_seq smallint Serial number of subquery conducted within a
hybrid search

context_id uuid Returned text chunk ID

chunk text Returned text chunk

rank integer Rank of text chunks within the same subquery type

score real Score of text chunk.

Hybrid search overall : Score calculated by RRF

Semantic text search : Score based on distance
between vectors in text meaning search

Full-text search : Score calculated by
score_expression in hybrid search processing

In the case of text meaning search, the score is calculated using the distance d between the vector representations of the text
chunk and the query text, according to the following formula.

pgx_vectorizer.pgx_context_metrics table

This is a list of text chunks returned by either hybrid search or subquery. When the pgx_list_contexts function is executed,
records for the specified query ID are inserted. You can enter any evaluation value in the context_metrics column.

Column Type Description

queryid bigint Hybrid search ID

context_id uuid Returned text chunk ID

context_metrics jsonb You can input evaluation values for text chunks.

pgx_vectorizer.pgx_trace_contexts view

Provide information about the text chunks returned by either hybrid search or subqueries.

For hybrid searches conducted with trace information enabled, there are records for each text chunk of search results for each
subquery.

Column Type Description

queryid bigint Hybrid search ID

retrieval_time timestamp with
timezone

Time when hybrid search was conducted

retrieval_user oid Database user who performed the hybrid search

application_name text Application name that issued the hybrid search. The
value of application_name specified

query jsonb Search criteria for hybrid search

subquery_type text Types of subqueries

'-' : Overall hybrid search (main query)

'semantic' : Semantic text search

'fulltext' : Full-text search

- 36 -

Column Type Description

subquery_text text Content of the executed subquery (SQL statement)

context_id uuid Returned text chunk ID

chunk text Returned text chunk

rank integer Rank of text chunks within the same subquery type

score real Score of text chunk.

Hybrid search overall : Score calculated by RRF

Semantic text search : Score based on distance
between vectors in text meaning search

Full-text search : Score calculated by
score_expression in hybrid search processing

context_metrics jsonb You can input evaluation values for text chunks.

3.13.5 Parameters
Describes the parameters to be set in the postgresql.conf file when using the semantic text search and automatic vectorization
feature.

- pgx_vectorizer.max_vectorize_worker

Specify the maximum number of workers that can run simultaneously within an instance and perform vectorization. The
number of workers that perform vectorization is determined by the number of vectorization definitions created. This
parameter can only be set at server startup. The default is 1. Because workers act as background workers, add the value
set for this parameter plus the number of databases with the pgx_vectorizer feature enabled plus 2 to the
max_worker_processes parameter, which specifies the maximum number of background workers. If the value set for
max_worker_processes is insufficient, the instance cannot start.

- pgx_vectorizer.pgai_worker_path

Specify the path to the program that performs vectorization processing. Specify <Fujitsu Enterprise Postgres server
feature installation directory>/OSS/pgai-worker/bin/pgai. The default value is /opt/fsepv<x>server64/OSS/pgai-
worker/bin/pgai (where "<x>" indicates the product version). You can reflect the changes by reloading the configuration
file.

- pgx_vectorizer.enable_hybrid_search_trace(boolean)

Enable trace information for hybrid search. The default is disabled. This parameter can be specified with the SET
statement by any user, but additional access rights are required to record trace information. Also, even if this parameter
is enabled on a hot standby server, trace information will not be recorded.

3.13.6 Evaluation of Knowledge Data Search

3.13.6.1 Concept of Evaluation for Knowledge Data Search
A knowledge database exists to provide users with appropriate knowledge. It is necessary to evaluate whether it is providing
users with appropriate knowledge. For the evaluation of knowledge data (offline evaluation), a set of pairs of queries and
results related to those queries (search results that should be returned for those queries) is prepared, and search accuracy is
calculated using it.

Basic indicators in offline evaluation of search systems are recall and precision. A high recall state means that records related
to the request are included in the search results without omission. A high precision state means that only records related to
the request are included in the search results. Recall and precision can be calculated using the following formulas.

- 37 -

Recall and precision are indicators that well represent whether necessary data is included or unnecessary data is not included.
However, there are the following challenges in directly using recall and precision for evaluating knowledge data retrieval.

- Difficulty in defining query-related results

When the same knowledge is contained in multiple records, returning even one record as a search result satisfies the user's
request. Therefore, it is impossible to define a single set of search results that should be returned for that query.

- High cost of preparing query-related results

Strictly defining query-related results requires determining whether each record in the database is related to the query or
not.

To address the first issue, instead of defining the correct set of records to be returned, there is a method to define it by the
content and meaning of the data. For example, there is a method to evaluate whether the sentences included in the records
support the expected claim.

The preparation cost for the correct answer, which is the second issue, can also be reduced by the above approach. This is
because the definition of the correct answer can be made from the content of the query or the content of the correct answer
to the query, rather than from (all) records included in the database.

"Judging based on the content of the text" refers to things like the following.

When the statement "Mount Fuji is the highest peak in Japan" is considered correct, if a record contains the sentence "Mount
Fuji is 3776 meters high and is recorded as the tallest mountain in Japan", this sentence can be judged to support the correct
fact.

In the method of judging based on the content and meaning of the text, it is necessary to extract the statement of fact from the
query or correct content and determine whether these statements are included in the search results. While it is certainly
possible for humans to perform this task, there is also a method to have language models do it. By doing so, the preparation
cost for correctness can be further reduced.

When adopting a method to evaluate search accuracy based on the content included in the records, it is important to note that
the evaluated target is not only the implementation method of the search process. This method is a direct evaluation approach
of the content obtained as search results. Therefore, not only the search method of the database but also what kind of
knowledge is included in the database and how the user converts the content they want to know into queries for the database
will affect the evaluation. When evaluating the accuracy of search methods with this approach, it is necessary to identify
which part is causing the issue before starting to tune the search method.

3.13.6.2 Evaluation Value per Record and Search Accuracy
There are various metrics to represent search accuracy, but many calculations of search accuracy consist of two steps:
obtaining evaluation values for individual records obtained as search results, and calculating search accuracy using the
overall evaluation values of individual records (text chunks).

- 38 -

The search accuracy of subqueries can be calculated in the same way. The search accuracy can be evaluated in the same way
for both full-text search subqueries and semantic text search. However, the text chunks returned by subqueries and the final
hybrid search contain the same ones. Since the evaluation values for the same text chunks are common, these evaluation
values can be determined and inputted together, and from there, only the evaluation values related to the text chunks for each
subquery can be used to calculate the search accuracy of each subquery.

3.13.6.3 Tuning the Combination Method of Hybrid Search
Based on the search accuracy of each subquery, you can tune the combination method of subqueries. Adjustable parameters
include, for example, the weighting between full-text search and semantic text search, and the number of retrievals each
subquery returns. If the semantic text search has a higher precision compared to full-text search, it is possible to increase the
weight of semantic text search used in the final ranking calculation. Additionally, by setting the number of retrievals
(num_results) in subqueries to a larger value than usual to obtain trace information, and calculating search accuracy such as
recall and precision for each number of retrievals, recall@k, and precision@k, you can determine the appropriate number of
retrievals from subqueries. As a result of evaluating search accuracy, you may detect issues that cannot be improved by the
combination method. In such cases, tuning of both semantic text search and full-text search is performed.

- 39 -

Chapter 4 Graph Management Feature
This chapter describes the graph management feature that provide graph storage and search.

Refer to the Apache AGE documentation for more details.

4.1 Overview of Graph Management Feature
The graph management feature enables you to store and search property graphs in Fujitsu Enterprise Postgres. A graph is a
data structure that represents relationships between entities using nodes and edges that connect the nodes. A property graph
is a type of graph in which nodes and edges can have information called properties. Graphs that represent relationships can
be searched based on relationships and properties. Graph searches are performed using openCypher, a query language for
graph databases.

4.2 Installation of Graph Management Feature
Graph management features are provided by the OSS's Apache AGE.

4.2.1 Setting Up the Graph Management Feature
Refer to "Apache AGE" in the Installation and Setup Guide for Server to set up Apache AGE.

4.2.2 Removing the Graph Management Feature
Refer to "Apache AGE" in the Installation and Setup Guide for Server to remove Apache AGE.

4.3 Creating a Graph
Graphs are stored in Fujitsu Enterprise Postgres as a single virtual data object called a graph. Internally, they are saved as
multiple database objects under a schema that has one-to-one correspondence with the graph. Graphs are created and deleted
using the create_graph and drop_graph functions, which are SQL functions provided by the graph management feature. If the
second argument of the drop_graph function is set to true, the database object under the schema that corresponds to the graph
will also be deleted.

Example) Creating a graph

SELECT create_graph('new_graph');

NOTICE: graph "new_graph" has been created

 create_graph

(1 row)

Example) Deleting a graph

SELECT drop_graph('new_graph', true);

NOTICE: drop cascades to 2 other objects

DETAIL: drop cascades to table new_graph._ag_label_vertex

drop cascades to table new_graph._ag_label_edge

NOTICE: graph "new_graph" has been dropped

 drop_graph

(1 row)

- 40 -

 Information

When you create a graph, a schema with the same name as the graph is created. Specify a name that does not overlap with
existing schemas. In particular, you cannot use reserved names beginning with pg_. Also, do not use names beginning with
pgx_.

The schema corresponding to a graph will be deleted when the graph is deleted. Do not create objects under this schema.

You can view a list of graphs and their corresponding schemas (namespaces) stored in a database with the graph management
feature enabled by using the following method.

Example) Graph list

SELECT * FROM ag_catalog.ag_graph ;

 graphid | name | namespace

---------+------------+------------

 81957 | new_graph | new_graph

 82576 | new_graph2 | new_graph2

 82598 | sample | sample

(3 rows)

4.4 Storing Graph Data
Adding nodes and edges to a graph is done through Cypher queries using cypher functions, which are SQL functions provided
by the graph management feature.

Example) Adding nodes and edges

SELECT * FROM cypher('new_graph', $$

 CREATE (:Person {name: 'Daedalus'})-[:FATHER_OF]->(:Person {name: 'Icarus'})

 $$) AS (a agtype);

 a

(0 rows)

In addition to the above, you can also load from a CSV file using the SQL functions load_labels_from_file and
load_edges_from_file.

4.5 Protecting Graph Data
Graphs are automatically protected by backup, multiplexing, or replication settings that specify the tablespace, database, or
instance in which the graph is saved.

This section describes the points to keep in mind when protecting graph data using Fujitsu Enterprise Postgres features.

Within Fujitsu Enterprise Postgres, graphs are stored as multiple objects under a schema that has one-to-one correspondence
with the graph. To protect a graph, configure protection for the database objects that make up the graph.

4.5.1 Encrypting the Graph
A graph consists of multiple database objects, and even after the graph is created by the create_graph function, a new table
will be created when a new label is added. If you want to encrypt multiple database objects that make up a graph, including
those that will be created in the future, set the default tablespace of the entire database that stores the graph to an encrypted
tablespace.

Example) When encrypting the entire database for which this feature is enabled

CREATE DATABASE rag_database TABLESPACE = encrypted_tablespace;

CREATE EXTENSION age;

- 41 -

To encrypt a graph when you cannot use a single tablespace per database, temporarily change the default tablespace to an
encrypted tablespace before the operation that creates the graph.

Example) Specifying table space and creating a graph

SET default_tablespace = 'secure_tablespace';

SELECT create_graph('graph1');

4.5.2 Restricting Access to Graph
Access to a graph is restricted by access control for the database objects that make up the graph. Access restrictions are set
using the confidentiality management feature of Fujitsu Enterprise Postgres. Since graphs have a one-to-one correspondence
with schema objects, you can allow or deny access to a graph by specifying access rights for that schema using the
confidentiality management feature as follows:

1. Refer to the "Confidentiality Management" in the Security Operations Guide to define confidentiality management
role, confidentiality matrix, confidentiality level, and confidentiality group.

2. Grant confidentiality privilege on the schema to the confidentiality group.

SELECT pgx_grant_confidential_privilege('rag_matrix', 'level1', 'group1', '{"schema":

["USAGE"]}');

3. Add the schema corresponding to the graph as a confidentiality object to the confidentiality level.

SELECT pgx_add_object_to_confidential_level ('rag_matrix', 'level1',

'[{

 "type":"schema",

 "object":[

 {

 "schema":"new_graph"

 }

]

}]');

4. Add roles to the confidentiality group you created to set access rights to the graph.

SELECT pgx_add_role_to_confidential_group('rag_matrix', 'group1', '["rag_user"]');

If you want to set fine-grained access privileges, such as allowing only searches of graphs but not updating them, you can use
SQL statements to directly set access privileges for database objects such as the tables that make up the graph.

The privileges required to access a graph are as follows:

- Privileges required to create a graph

- CREATE privilege for the database

- Privileges required to create and delete new nodes and edges

- CREATE and USAGE privilege for the schema with the same name as the graph name

- When adding a node, ownership of the _ag_label_vertex table under the schema with the same name as the graph
name

- When adding an edge, ownership of the _ag_label_edge table under the schema with the same name as the graph
name

- UPDATE privilege for _label_id_seq under the schema with the same name as the graph name

- Privileges required to create and delete nodes and edges that use existing labels

- USAGE privilege for the schema with the same name as the graph name

- 42 -

- When adding a node, privileges under the schema with the same name as the graph name

- INSERT privilege (to create), SELECT privilege, and UPDATE privilege (to delete) for the _ag_label_vertex
table or a table with the same name as the label name to be added

- USAGE privilege for the _ag_label_vertex_id_seq sequence or a sequence with the same name as the label name
to be added

- Privileges when adding an edge

- INSERT (create), SELECT, and UPDATE (delete) privileges for the _ag_label_edge table under the schema
with the same name as the graph name or the table with the same name as the label name to be added.

- USAGE privilege for the _ag_label_edge_id_seq sequence or the sequence with the same name as the label
name to be added.

- Privileges required to search graphs.

- USAGE privilege for the ag_catalog schema.

- USAGE privilege for the schema with the same name as the graph name.

- SELECT privilege for the table object in the schema with the same name as the graph name.

 Information

Graph data structures do not have the concept of rows and columns, so PostgreSQL's row-level security and column-based
access control features cannot be applied.

4.5.3 Recording Access to Graph
The audit log feature of Fujitsu Enterprise Postgres is used to record access to the graph in the audit log. When specifying
database objects to be audited individually, specify each database object that constitutes the graph.

When adding new labels to a graph, new corresponding tables are created, so those tables must also be specified as targets
for auditing.

4.6 Searching Graph
Graph searches are performed using Cypher queries. Cypher queries are specified as strings as arguments to the cypher
function, which is an SQL function.

For more information about Cypher queries, refer to the Apache AGE documentation.

Example) Graph search

SELECT * FROM cypher('new_graph', $$

 MATCH (:Person {name: 'Daedalus'})-[:FATHER_OF]->(person)

 WITH person.name AS name ORDER BY person.name RETURN name

 $$) AS (v agtype);

 v

 "Icarus"

(1 row)

Graph searches allow you to retrieve specific property values or sets of properties for nodes or edges that match a condition.
Properties are returned in agType data type added by the graph management feature, which is compatible with JSON types.
Graph searches are closed to cypher functions, but the retrieved values can also be combined with searches of other tables in
the database.

Example) Combination

SELECT (x::json->'properties')->'name' FROM cypher('new_graph', $$

MATCH (x)

- 43 -

RETURN x $$) AS (x agtype);

 ?column?

 "Daedalus"

 "Icarus"

(2 row)

4.7 Adding Labels to Graph
Labels in a graph represent the type of node or edge, and are an important element in expressing the schema of knowledge
data stored as a graph. Adding a label is easier than adding a column to a table, but you should plan carefully and consider
the impact on your application. By default, only the database user who created the graph can add new labels.

When adding nodes or edges with new labels to a graph, new tables corresponding to each label are created. To encrypt a
graph, change the default tablespace to an encrypted tablespace before adding labels. The access rights for these newly
created tables are inherited from the access rights for the tables for unlabeled nodes or unlabeled edges, so no additional steps
are required if you want to reuse those access rights.

You can check the tablespaces in which tables corresponding to each label of the graph nodes and edges are located with the
following SQL.

SELECT g2.graphname AS graphname, c.relname AS relname, c.reltablespace AS reltablespace

FROM pg_class c,

rag_databse-> (SELECT g.name AS graphname, l.relation AS relation FROM

ag_catalog.ag_graph AS g, ag_catalog.ag_label AS l WHERE g.graphid = l.graph) AS g2 WHERE

c.oid = g2.relation;

 graphname | relname | reltablespace

------------+------------------+---------------

 new_graph | _ag_label_vertex | 0

 new_graph | _ag_label_edge | 0

 new_graph | x | 0

 new_graph | y | 0

 new_graph2 | _ag_label_vertex | 0

 new_graph2 | _ag_label_edge | 0

 sample | _ag_label_vertex | 80722

 sample | _ag_label_edge | 80722

(8 rows)

4.8 Performance Tuning of Graph Search
Graph data is stored internally as multiple tables. Graph data searches are implemented as SELECT statements on those
tables. The access plan can be checked with the EXPLAIN statement in the same way as for normal SQL statements.

Graph data consists of a table with a record for each node and a table with a record for each edge, and queries corresponding
to graph data are implemented by joining and filtering those tables. Therefore, the approach to performance issues in graph
searches is the same as for SELECT statements that include joins.

Example) Checking the access plan of a graph search

SELECT * FROM cypher('new_graph', $$

EXPLAIN (COSTS off) MATCH (:Person {name: 'Daedalus'})-[:FATHER_OF]->(person)

WITH person.name AS name ORDER BY person.name RETURN name

$$) AS (v agtype);

 QUERY PLAN

--

--

 Sort

 Sort Key: (agtype_access_operator(VARIADIC ARRAY[_agtype_build_vertex(person.id,

_label_name('25995'::oid, person.id), person.properties), '"name"'::agtype]))

 -> Hash Join

 Hash Cond: (person.id = _age_default_alias_1.end_id)

 -> Append

- 44 -

 -> Seq Scan on _ag_label_vertex person_1

 -> Seq Scan on "Person" person_2

 -> Hash

 -> Hash Join

 Hash Cond: (_age_default_alias_1.start_id = _age_default_alias_0.id)

 -> Seq Scan on "FATHER_OF" _age_default_alias_1

 -> Hash

 -> Seq Scan on "Person" _age_default_alias_0

 Filter: (properties @> '{"name": "Daedalus"}'::agtype)

(14 rows)

4.9 Using Graph Data in Applications
The cypher function returns a value of the agType data type. The agType type is a subset of the json type. If you want to handle
this data type directly in your application, please install a driver for each language in your application. If you do not use a
driver, the agType type will be returned to your application as a string or JSON type.

 See

For driver installation, refer to below.

https://github.com/apache/age/tree/master/drivers

4.10 Visualizing Graph Data
You can use the OSS age-viewer as a tool to visualize graph data.

 See

For age-viewer installation, refer to below.

https://github.com/apache/age?tab=readme-ov-file#graph-visualization-tool-for-age

4.11 Internal Structure of Graph Data
When you create a graph, a corresponding schema is created, and tables, indexes, and sequence objects are created under it.
For more information, see the Apache AGE documentation.

4.12 Quantitative Limits
The total number of nodes and edges must be less than or equal to 2^48 - 1. This restriction applies only to one particular
graph.

4.13 Reference
The following SQL functions are provided, refer to Apache AGE documentation for details:

Function Description

create_graph Creating a graph

drop_graph Deleting a graph

cypher Manipulating graphs with Cypher queries

load_labels_from_file and
load_edges_from_file

Loading the graph data

- 45 -

	Title Page
	Preface
	Contents
	Chapter 1 Knowledge Data Management Feature
	1.1 Overview of the Knowledge Data Management Feature
	1.2 Examples of Using Knowledge Data
	1.2.1 Example of Searching Text Data Based on Semantic Similarity
	1.2.2 Example of Searching a Graph Based on Relationships

	Chapter 2 Vector Data Management Feature
	2.1 Setting Up the Vector Data Management Feature
	2.2 Storing and Searching Vector Data
	2.3 Protecting Vector Data
	2.4 Performance Tuning for Similar Search of Vector Data
	2.5 Using Vector Data by Applications
	2.6 Quantitative Limits

	Chapter 3 Semantic Text Search and Automatic Vectorization Feature
	3.1 Overview of the Semantic Text Search and Automatic Vectorization Feature
	3.2 Installation of Semantic Text Search and Automatic Vectorization
	3.2.1 Operating Environment
	3.2.2 Setup
	3.2.2.1 Setting Up pgai
	3.2.2.2 Setting Up pgx_vectorizer
	3.2.2.3 Migration from Fujitsu Enterprise Postgres 17 SP1

	3.2.3 Removing
	3.2.4 Stopping the vectorize scheduler
	3.2.5 Credentials Protection
	3.2.5.1 Encrypting Credentials
	3.2.5.2 Restrict Access to Credentials

	3.3 Preparation for Semantic Text Search
	3.3.1 Configuring Embedded Providers (for Workers)
	3.3.2 Configuring Embedded Providers (for Semantic Text Search)
	3.3.3 Definition of Vectorization
	3.3.4 Granting Privilege to Execute Functions

	3.4 Storing Vector Data for Semantic Text Search
	3.5 Protecting Vector Data for Semantic Text Search
	3.5.1 Encrypting Vector Data for Semantic Text Search
	3.5.2 Restricting Access to Vector Data for Semantic Text Search
	3.5.3 Recording Access to Vector Data for Semantic Text Search

	3.6 Monitoring Vectorization Processing for Semantic Text Search
	3.6.1 Checking the Vectorization Queue
	3.6.2 Checking the Status of Vectorization Processing
	3.6.3 Checking the Scheduler for Vectorization Processing

	3.7 Temporarily Disabling Vectorization Processing for Semantic Text Search
	3.8 Semantic Text Search
	3.9 Changing the Vector Representation Used in Semantic Text Search
	3.10 Performance Tuning of Semantic Text Search
	3.11 Hybrid Search
	3.12 Improving the Accuracy of Hybrid Search
	3.12.1 Overview of Hybrid Search Tuning
	3.12.2 Recording and Deleting Traces of Hybrid Search
	3.12.3 Calculation of Search Accuracy Using External Tools
	3.12.4 Calculation of Search Accuracy in the Database
	3.12.4.1 Example of Calculating Search Accuracy in a Database

	3.12.5 Tuning of Hybrid Search

	3.13 Reference
	3.13.1 Vectorization Functions
	3.13.1.1 Defining Vectorization
	3.13.1.2 Vectorization Schedule
	3.13.1.3 Vectorizer Management Functions

	3.13.2 Embedded Provider Management Functions
	3.13.3 Search Functions
	3.13.3.1 Semantic Text Search
	3.13.3.2 Hybrid Search
	3.13.3.3 Details of the pgx_hybrid_search Function

	3.13.4 Tables/Views Created by Semantic Text Search and Automatic Vectorization Feature
	3.13.5 Parameters
	3.13.6 Evaluation of Knowledge Data Search
	3.13.6.1 Concept of Evaluation for Knowledge Data Search
	3.13.6.2 Evaluation Value per Record and Search Accuracy
	3.13.6.3 Tuning the Combination Method of Hybrid Search

	Chapter 4 Graph Management Feature
	4.1 Overview of Graph Management Feature
	4.2 Installation of Graph Management Feature
	4.2.1 Setting Up the Graph Management Feature
	4.2.2 Removing the Graph Management Feature

	4.3 Creating a Graph
	4.4 Storing Graph Data
	4.5 Protecting Graph Data
	4.5.1 Encrypting the Graph
	4.5.2 Restricting Access to Graph
	4.5.3 Recording Access to Graph

	4.6 Searching Graph
	4.7 Adding Labels to Graph
	4.8 Performance Tuning of Graph Search
	4.9 Using Graph Data in Applications
	4.10 Visualizing Graph Data
	4.11 Internal Structure of Graph Data
	4.12 Quantitative Limits
	4.13 Reference

