
Internals of logical
replication

Vigneshwaran C

Agenda

● Introduction
● Use cases
● Architecture
● Publication
● Subscription
● Logical replication processes
● Replication of different transaction types
● Replication slot
● PG15 new features

3 © Fujitsu 2024Fujitsu-Public

Introduction

● Logical replication is a method of replicating data changes from publisher to
subscriber.

● The node where a publication is defined is referred to as publisher.

● The node where a subscription is defined is referred to as the subscriber.

● Logical replication allows fine-grained control over both data replication and security.

● Logical replication uses a publish and subscribe model with one or
more subscribers subscribing to one or more publications on a publisher node.

● Subscribers pull data from the publications they subscribe to and may subsequently
re-publish data to allow cascading replication or more complex configurations.

4 © Fujitsu 2024Fujitsu-Public

Use cases

● Sending incremental changes in a single database or a subset of a database to
subscribers as they occur.

● Firing triggers for individual changes as they arrive on the subscriber.

● Consolidating multiple databases into a single one (e.g., for analytical purposes).

● Replicating between different major versions of PostgreSQL.

● Replicating between PostgreSQL instances on different platforms (e.g., Linux to
Windows).

● Giving access to replicated data to different groups of users.

● Sharing a subset of the database between multiple databases.

5 © Fujitsu 2024Fujitsu-Public

Architecture

Publisher node

Data

Backend WAL sender

4
Check if this
change should
be published

5

Subscriber node

Apply
workerData

Prepare/
commit

Read / write

WAL6 Send prepared /
committed Txns

Send initial
table data

Table Sync
worker

2

7

Start
workerCopy initial

table data3

8

9
Apply
Txns

Launcher

1

10

6 © Fujitsu 2024Fujitsu-Public

Publication

● A publication can be defined on the primary node whose changes should be replicated.
● A publication is a set of changes generated from a table or a group of tables and

might also be described as a change set or replication set.
● Each publication exists in only one database.

● Publications are different from schemas and do not affect how the table is accessed.
● Each table can be added to multiple publications if needed.
● Publications may currently only contain tables and all tables in schema.

● Publications can choose to limit the changes they produce to any combination of
INSERT, UPDATE, DELETE, and TRUNCATE, similar to how triggers are fired by particular
event types.
● By default, all operation types are replicated.

1/3

7 © Fujitsu 2024Fujitsu-Public

Publication 2/3

postgres=# CREATE PUBLICATION pub_all FOR ALL TABLES;
CREATE PUBLICATION
postgres=# SELECT * FROM pg_publication;
 oid | pubname | pubowner | puballtables | pubinsert | pubupdate | pubdelete | pubtruncate | pubviaroot
-------+---------------+----------+--------------+-----------+-----------+-----------+-------------+------------
 16392 | pub_alltables | 10 | t | t | t | t | t | f
(1 row)

postgres=# CREATE PUBLICATION pub_employee FOR TABLE employee;
CREATE PUBLICATION
postgres=# SELECT oid, prpubid, prrelid::regclass FROM
pg_publication_rel;
 oid | prpubid | prrelid
-------+---------+----------
 16407 | 16406 | employee
(1 row)

● When a publication is created the publication information will be added to
pg_publication catalog table:

● Information about table publication is added to pg_publication_rel catalog
table:

8 © Fujitsu 2024Fujitsu-Public

Publication

● Information about schema publications is added to pg_publication_namespace catalog
table:

3/3

postgres=# CREATE PUBLICATION pub_sales_info FOR TABLES IN SCHEMA marketing, sales;
CREATE PUBLICATION
postgres=# SELECT oid, pnpubid, pnnspid::regnamespace FROM pg_publication_namespace;
 oid | pnpubid | pnnspid
-------+---------+-----------
 16410 | 16408 | marketing
 16411 | 16408 | sales
(2 rows)

postgres=# CREATE PUBLICATION pub_data_all FOR TABLE data;
CREATE PUBLICATION
postgres=# CREATE PUBLICATION pub_data_blue FOR TABLE data WHERE (rgb = 'B');
CREATE PUBLICATION
postgres=# SELECT * FROM pg_publication_tables;
 pubname | schemaname | tablename | attnames | rowfilter
---------------+------------+-----------+----------+-------------------
 pub_data_all | public | data | {id,rgb} |
 pub_data_blue | public | data | {id,rgb} | (rgb = 'B'::text)

(2 rows)

● The view pg_publication_tables provides information about the mapping between
publications and information of tables they contain.

9 © Fujitsu 2024Fujitsu-Public

Subscription

● A subscription is the downstream side of logical replication.
● A subscription defines the connection to another database and set of publications (one or

more) to which it wants to subscribe.

● The subscriber database behaves in the same way as any other PostgreSQL instance
and can be used as a publisher for other databases by defining its own publications.

● A subscriber node may have multiple subscriptions if desired.
● It is possible to define multiple subscriptions between a single publisher-subscriber pair, in

which case care must be taken to ensure that the subscribed publication objects don't overlap.

● Each subscription will receive changes via one replication slot.
● Additional replication slots may be required for the initial data synchronization of pre-existing

table data and those will be dropped at the end of data synchronization.

1/4

10 © Fujitsu 2024Fujitsu-Public

Subscription

● When a subscription is created, the subscription information will be added to
pg_subscription catalog table:

2/4

postgres=# CREATE SUBSCRIPTION sub_alltables
CONNECTION 'dbname=postgres host=localhost port=5432'
PUBLICATION pub_alltables;
NOTICE: created replication slot "sub_alltables" on publisher
CREATE SUBSCRIPTION
postgres=# SELECT oid, subdbid, subname, subconninfo, subpublications FROM pg_subscription;
 oid | subdbid | subname | subconninfo | subpublications
-------+---------+------------------+--+-----------------
 16393 | 5 | sub_alltables | dbname=postgres host=localhost port=5432 | {pub_alltables}
(1 row)

● The subscriber will connect to the publisher and get the list of tables that the
publisher is publishing.

11 © Fujitsu 2024Fujitsu-Public

Subscription

● In our earlier example, we created pub_alltables to publish data of all tables, the
publication relations will be added to pg_subscription_rel catalog tables:

● Subscriber connects to the publisher and creates a replication slot, whose information
is available in pg_replication_slots:

3/4

postgres=# SELECT srsubid, srerelid::regclass FROM pg_subscription_rel;
 srsubid | srrelid
---------+---------
 16399 | accounts
 16399 | account_roles
 16399 | roles
 16399 | department
 16399 | employee
(5 rows)

postgres=# SELECT slot_name, plugin, type, datoid, database, temporary, active,
active_pid, restart_lsn, confrm_flush_lsn FROM pg_replication_slots;
 slot_name | plugin | slot_type | datoid | database | temporary | active | active_pid | restart_lsn | confirmed_flush_lsn
---------------+----------+-----------+--------+----------+-----------+--------+------------+-------------+---------------------
 sub_alltables | pgoutput | logical | 5 | postgres | f | t | 24473 | 0/1550900 | 0/1550938
(1 row)

12 © Fujitsu 2024Fujitsu-Public

Subscription

● Subscribers add the subscription stats information to pg_stat_subscription:

● The initial part of the CREATE SUBSCRIPTION command will be completed and
returned to the user.

● The remaining work will be done in the background by replication launcher, walsender,
apply worker and table sync worker after the CREATE SUBSCRIPTION command is
completed.

4/4

postgres=# SELECT subid, subname, received_lsn FROM pg_stat_subscription;
subid | subname | received_lsn
-------+-----------------+----------------
 16399 | sub_alltables | 0/1550938

(1 row)

13 © Fujitsu 2024Fujitsu-Public

Processes - Replication launcher

● This process is started by the postmaster during the start of the instance.

● The logical replication worker launcher uses the background worker infrastructure to
start the logical replication workers for every enabled subscription.

● The launcher process will periodically check the pg_subscription catalog table to see
if any subscription has been added or enabled.

1/2

vignesh 24438 /home/vignesh/postgres/inst/bin/postgres -D subscriber

vignesh 24439 postgres: checkpointer

vignesh 24440 postgres: background writer

vignesh 24442 postgres: walwriter

vignesh 24443 postgres: autovacuum launcher

vignesh 24444 postgres: logical replication launcher

14 © Fujitsu 2024Fujitsu-Public

Processes - Replication launcher

● Once the launcher process identifies that a new subscription has been created or
enabled, it will start an apply worker process.

● The apply worker running can be seen from the process list:

2/2

vignesh 24438 /home/vignesh/postgres/inst/bin/postgres -D subscriber

vignesh 24439 postgres: checkpointer

vignesh 24440 postgres: background writer

vignesh 24442 postgres: walwriter

vignesh 24443 postgres: autovacuum launcher

vignesh 24444 postgres: logical replication launcher

vignesh 24472 postgres: logical replication apply worker for subscription 16399

vignesh 24473 postgres: walsender vignesh postgres 127.0.0.1(55020) START_REPLICATION

The above
information illustrates
step 1 mentioned in

the architecture

15 © Fujitsu 2024Fujitsu-Public

Processes - Apply worker

● The Apply worker will iterate through the table
list and launch table sync workers to
synchronize the tables.

● Each table will be synchronized by one table
sync worker.

● Multiple table sync workers (one for each table)
will run in parallel based on
max_sync_workers_per_subscription
configuration.

● Table synchronization workers are taken from
the pool defined by
max_logical_replication_workers configuration.

1/2

Publisher node

walsender
pgoutput

Publisher

T1

T2

T3

WAL

walsender
pgoutput

walsender
pgoutput

walsender
pgoutput

Logical replication slot

T1 Logical replication slot

T2 Logical replication slot

T3 Logical replication slot

Subscriber node

Subscriber

T1

T2

T3

Replication
message

T1 Tablesync workerReplication
message

Replication
message

Replication
message

T2 Tablesync worker

Apply worker
(for all tables)

T3 Tablesync worker

16 © Fujitsu 2024Fujitsu-Public

Processes - Apply worker

● The apply worker will wait until the table sync worker copies the initial table data and
sets the table state to ready state in pg_subscription_rel.

2/2

postgres=# SELECT srsubid, srrelid::regclass, srsubstate, srsublsn FROM pg_subscription_rel;
 srsubid | srrelid | srsubstate | srsublsn
---------+----------------+------------+-----------
 16399 | accounts | r | 0/156B8D0
 16399 | account_roles | r | 0/156B8D0
 16399 | department | r | 0/156B940
 16399 | employee | r | 0/156B940
 16399 | roles | r | 0/156B978
(5 rows)

The above
information illustrates
step 2 mentioned in

the architecture

● Note: Currently, DDL operations are
not supported by logical replication.
Only DML changes will be replicated.

17 © Fujitsu 2024Fujitsu-Public

Processes – Tablesync worker

● The initial data synchronization is done separately
for each table, by a separate table sync worker.

● Create a replication slot with USE_SNAPSHOT
option and copy table data with COPY command.

● Table sync worker will request the publisher to
start replicating data from the publisher.

● Table sync worker will synchronize data from
walsender until it reaches the syncworker’s LSN
set by the apply worker.

Apply worker Tablesync worker
If there is no tablesync

worker for this table, then
launch one now

Notices a tablesync worker
at state STATE_SYNCWAIT

so tells it to catch up

STATE_READY
Now both workers are

synchronized, so this table
is marked ready

Handle zero or more
replication messages until it
gets to same stream position

as the tablesync worker

Copy table initial data

Initial stateSTATE_INIT

Copy table dataSTATE_DATASYNC

Table copy is
completedSTATE_FINISHEDCOPY

STATE_CATCHUP

Handle zero or more
replication messages until

it gets to same stream
position as apply worker

All caught upSTATE_SYNCDONE

Pause here until
apply worker
tells to catch up

STATE_SYNCWAIT

Wait for the tablesync
worker to exit or reach

STATE_SYNCDONE

The information to
the left illustrates

step 3 mentioned in
the architecture

18 © Fujitsu 2024Fujitsu-Public

Processes - Walsender

● Takes care of sending WAL from the primary server to a single recipient.

● Started by the postmaster when the subscriber connects to the publisher and
requests WAL.

● Reads the WAL record by record and decodes the WAL to get the tuple data and
size.

● Queues this change into the reorderbufferqueue.

● The reorderbufferqueue collects individual pieces of transactions in the order
they are written to the WAL. When a transaction is completed, it will reassemble
the transaction and call the output plugin with the changes.

● If the reorderbufferqueue exceeds logical_decoding_work_mem, then find the
largest transaction and evict it to disk.

1/3

19 © Fujitsu 2024Fujitsu-Public

Processes - Walsender

● If streaming is enabled, then this transaction data will be sent to subscriber, but will
be applied in the subscriber only after the transaction is committed in the publisher.

● Once the transaction is committed:

● Check if this relation should be published (based on ALL TABLES or TABLE list or
TABLES IN SCHEMA list specified in the publication).

● Check if this operation should be published (based on what user has specified for
publish option – insert/update/delete/truncate).

● Change the publish relation ID if publish_via_partition_root is set. In this case the
relation ID of the ancestor will be sent.

● Check and filter this data if it satisfies the condition specified by row
filter/column list.

2/3

20 © Fujitsu 2024Fujitsu-Public

3/3Processes - Walsender

● This transaction data will be sent to the subscriber.

● Update the statistics like txn count, txn bytes, spill count, spill bytes, spill txns,
stream count, stream bytes, stream txns.

3/3

The above information
illustrates steps 7 and

8 mentioned in the
architecture

21 © Fujitsu 2024Fujitsu-Public

Replicating incremental changes

Walsender Apply worker

Txn start
● Begin message includes final_lsn of the DML

txn, commit time, and txn ID.
● Receives begin message which will include the final_lsn of the DML, txn,

commit time, and txn ID.

● Sends relation info: relation ID, schema name,
relation name, attribute info, and relation kind.

● Gets relation information which includes relation ID, schema name, relation
name, attribute information, and relation kind. Stores this info in a hash map.

Insert
Update
Delete

● Sends relation ID and tuple info (for updates,
send old and new tuple info)
Tuple info includes number of columns. Each
column will have the column type, length and
column data.

● Creates a tuple.
● Fills the tuple with the received values.
● Fills the required default columns.
● Finds indices associated with result relation and populates values.
● Finds the tuple in the table.
● Inserts / updates / deletes tuple

Truncate
● Sends truncate flags, number of relations, and

the relation ID.
● Gets truncate flags, number of relations, and relation ID information.
● For each table specified: truncates the relation and all associated objects

such as indices and toast table.

Commit
● Sends commit information, which includes

LSN details and commit time.

● Gets commit information, which includes LSN details and commit time.
● Commits transaction in subscriber.
● Updates origin LSN.
● Stores the flush position of local LSN and remote LSN in a map.
● Periodically sends recv, write, and flush positions to walsender.

Ins Upd Del

Ins Upd Del

Ins Upd

Ins Upd Del

Ins Upd Del

Upd Del

Del

The above information illustrates step 9 mentioned in the architecture

22 © Fujitsu 2024Fujitsu-Public

Apply Worker Failure handling

● If the apply worker fails due to an error, the apply worker process will exit.

● The apply worker will have maintained the origin LSN during the last transaction
commit.

● The replication launcher will periodically check if the subscription worker is
running. If the launcher identifies that it is not, then it will restart the worker for the
subscription.

● The apply worker will request start_replication streaming from the last origin LSN
that was committed.

● Walsender will start streaming transactions from the origin LSN (last committed
transaction) requested by the apply worker.

1/3

23 © Fujitsu 2024Fujitsu-Public

Apply Worker Failure handling

● Whenever the apply worker encounters a constraint error such as duplicate
constraint error, check constraint error, etc, it will exit and repeat the steps
mentioned in the previous slide.

● There is an option to skip the LSN in case of errors - user can set skip lsn of the
failing transaction in this case.

● If user sets to skip LSN, the apply worker will check if the transaction matches
the LSN specified, skip this transaction, and proceed to the next one.

2/3

24 © Fujitsu 2024Fujitsu-Public

Apply Worker Failure handling

● Whenever the apply worker encounters a constraint error such as duplicate
constraint error, check constraint error, etc, it will exit and repeat the steps
mentioned in the previous slide.

● The user can disable_on_error instead of repeatedly trying the steps.

● In this case, any error in the apply worker will be caught using try() /catch(), and
the subscription will be disabled before the apply worker exists.

● As the subscription is disabled, the launcher will not restart the apply worker for
the subscription.

3/3

25 © Fujitsu 2024Fujitsu-Public

Altering a subscription

● The apply worker will periodically check the current
subscription values against the new ones - if they have been
changed, the apply worker will exit.

● The launcher will restart the apply worker after the latter exits.

● The apply worker will load the new subscription values from
pg_subscription system table.

● The apply worker will apply the changes using the newly
modified values.

Get current
subscription

values

Get new
subscription

values

Modified

Restart
worker with
new values

26 © Fujitsu 2024Fujitsu-Public

How synchronous_commit is achieved

● Create subscription with synchronous_commit
option as ‘on’ in the subscriber.

● In the publisher:
● Set synschronous_standby_names to the

subscription name using "ALTER SYSTEM SET
synchronous_standby_names…" command in
the publisher

● Reload the configuration using
pg_reload_conf

● Verify that is_sync option is enabled in
pg_stat_replication.

Publisher

Subscriber
postgres=# CREATE SUBSCRIPTION sync
CONNECTION 'dbname=postgres host=localhost port=5432'
PUBLICATION sync
WITH (synchronous_commit = 'on');
NOTICE: created replication slot "sync" on publisher
CREATE SUBSCRIPTION

postgres=# ALTER SYSTEM SET synchronous_standby_names TO 'sync';
ALTER SYSTEM

postgres=# SELECT pg_reload_conf();
 pg_reload_conf

 t
(1 row)

postgres=# SELECT application_name, sync_state = 'sync' AS is_sync
FROM pg_stat_replication
WHERE application_name = 'sync';
 application_name | is_sync
------------------+---------
 sync | t
(1 row)

1/2

27 © Fujitsu 2024Fujitsu-Public

Subscriber node

How synchronous_commit is achieved 2/2

Publisher node

Data

Backend
WAL

sender

1

2

Apply
worker

WAL3

5

Commit

Respond

10

4
Waits until txn is committed
in subscriber

9

Data

7

6
Logical replication

Respond

8 Apply and
commit txns

Backend in the publisher performs transactions

Backend adds the LSN and backend information to the syncrep queue to be awakened by the walsender

Backend generates the WAL records for transactions

Walsender decodes WAL records of the corresponding txns, sends txns to the subscriber, and waits until txn is complete

Subscriber confirms the transaction is committed

Apply worker applies the transactions

Backend commits the transaction successfully

Walsender awakens the backend

4

3

8

7

10

9

1 2

5 6

28 © Fujitsu 2024Fujitsu-Public

Replication slot

● As mentioned earlier, each (active) subscription receives changes from a replication
slot on the remote (publishing) side.

● Additional table synchronization slots are normally transient, created internally to
perform initial table synchronization and dropped automatically when they are no
longer needed.

● These table synchronization slots have generated names:
● pg_%u_sync_%u_%llu

1/2

subscription oid table relid system identifier sysid

29 © Fujitsu 2024Fujitsu-Public

Replication slot

● Normally, the remote replication slot is created automatically when the subscription is
created during CREATE SUBSCRIPTION and it is dropped automatically when the
subscription is dropped during DROP SUBSCRIPTION.

● In some situations, however, it can be useful or necessary to manipulate the
subscription and the underlying replication slot separately.

● Replication slots provide an automated way to ensure that the primary does not
remove WAL segments until they have been received by all standbys.

2/2

30 © Fujitsu 2024Fujitsu-Public

Row filters 1/4

postgres=# CREATE PUBLICATION active_departments FOR TABLE departments WHERE (active IS TRUE);

CREATE PUBLICATION

postgres=# SELECT oid, prpubid, prrelid, pg_get_expr (prqual, prrelid) FROM pg_publication_rel;

 oid | prpubid | prrelid | pg_get_expr

-------+---------+---------+------------------

 16457 | 16456 | 16426 | (active IS TRUE)

(1 row)

● An optional WHERE clause can be specified.

● This information is stored in pg_publication_rel catalog table:

● Rows that don't satisfy this WHERE clause will be filtered by the publisher.

● This allows a set of tables to be partially replicated.

● During table sync only the table data that satisfies the row filter will be copied to the
subscriber.

31 © Fujitsu 2024Fujitsu-Public

Row filters

Subscriber 2

Subscriber 1

id rgb
1 R
2 R
3 G
4 B
5 G
6 R
7 B
8 B
9 R
10 G

id rgb
1 R
2 R
6 R
9 R

id rgb
1 R
2 R
4 B
6 R
7 B
8 B
9 R

CREATE SUBSCRIPTION sub_r

CONNECTION …

PUBLICATION pub_data_red;

CREATE SUBSCRIPTION sub_r_b

CONNECTION …

PUBLICATION pub_data_red,

 pub_data_blue;

Multiple row filter
expressions for the same

table will be OR-ed together

CREATE PUBLICATION pub_data_red
FOR TABLE data

WHERE (rgb = 'R');

Data

2/4

CREATE PUBLICATION pub_data_blue
FOR TABLE data

WHERE (rgb = 'B');

32 © Fujitsu 2024Fujitsu-Public

Row filters

● If the subscription has several publications in which the same table has been published
with different filters (for the same publish operation):
● The expressions get OR 'ed, and rows satisfying any of the expressions are

replicated.

● If the subscription has several publications in which some publication is defined for
ALL TABLES or TABLES IN SCHEMA publication where the table belongs to the
referred schema:
● ALL TABLES publication and TABLES IN SCHEMA publication take precedence and

the publish treat as if there are no row filters.

3/4

33 © Fujitsu 2024Fujitsu-Public

Row filters transformation

● For insert operations, the publisher checks if the new row satisfies the row filter
condition to determine if the new record should be sent to the subscriber or skipped.

● For delete operations, the publisher checks if the row satisfies the row filter condition
to determine if the operation should be sent to the subscriber or skipped.

● The update operation is handled in a slightly different manner:
● If neither the old row nor the new one match the row filter condition:
●Update is skipped.

● If the old row does not satisfy the row filter condition, but the new one does:
● Transform the update to insertion of new row on the subscriber.

● If the old row satisfies the row filter condition but the new one does not:
● Transform the update into deletion of old row from the subscriber.

● If both the old row and the new one satisfy the row filter condition:
● Send the data as an update to the subscriber, without any transformation.

4/4

34 © Fujitsu 2024Fujitsu-Public

Column List 1/4

postgres=# CREATE PUBLICATION users_filtered FOR TABLE users (user_id, firstname);

CREATE PUBLICATION

postgres=# SELECT * FROM pg_publication_rel;

 oid | prpubid | prrelid | prqual | prattrs

-------+---------+---------+--------+---------

 16453 | 16452 | 16436 | | 1 2

(1 row)

postgres=# SELECT * FROM pg_publication_tables;

 pubname | schemaname | tablename | attnames | rowfilter

---------------+------------+-----------+----------------------+-----------

users_filtered | public | users | {user_id, firstname} |

(1 row)

● An optional column list clause can be specified.

● This information is stored in pg_publication_rel catalog table:

● Columns not included in this list are not sent to the subscriber.

● This allows the schema on the subscriber to be a subset of the publisher schema.

35 © Fujitsu 2024Fujitsu-Public

Column List

Subscriber

CREATE PUBLICATION pub_student

FOR TABLE student

(stud_id,name,phone,email);

CREATE SUBSCRIPTION sub_student

CONNECTION ...

PUBLICATION pub_student;

student Table

stud_id name phone email

1001 steve 999999999 steve@test.com

1002 leo 888888888 leo@test.com

1003 thom 777777777 thom@test.com

1004 jobs 666666666 jobs@test.com

1005 gates 555555555 gates@test.com

stud_id name dob phone course_id email photo

1001 steve 01-01-2004 999999999 251 steve@test.com steve.jpeg

1002 leo 02-02-2004 888888888 252 leo@test.com leo.jpeg

1003 thom 03-03-2004 777777777 253 thom@test.com thom.jpeg

1004 jobs 04-04-2004 666666666 254 jobs@test.com jobs.jpeg

1005 gates 05-05-2004 555555555 254 gates@test.com gates.jpeg

2/4

student Table

36 © Fujitsu 2024Fujitsu-Public

Column List

● During the initial table synchronization, only columns included in the column list are
copied to the subscriber.

● When sending incremental transaction changes, publisher will check for the relation
information and send to the subscriber the values for the columns that match the
specified column list. The other columns are skipped.

● For partitioned tables, publish_via_partition_root determines whether the column list
for the root or the leaf relation will be used.
● If the parameter is 'false' (the default), the list defined for the leaf relation is used.
● Otherwise, the column list for the root partition will be used.

● Specifying a column list when the publication also publishes FOR TABLES IN SCHEMA
is not supported.

● There's currently no support for subscriptions comprising several publications where
the same table has been published with different column lists.

3/4

37 © Fujitsu 2024Fujitsu-Public

Advantages of row filters and column list

● The row filter and column list features provide the following advantages:

● Reduces network traffic (increase performance) by replicating only a small subset
of a large data table.

● Provides only the data that is relevant to a subscriber node.

● Acts as a form of security by hiding sensitive information (not replicating credit card
number).

38 © Fujitsu 2024Fujitsu-Public

Replicating TABLES IN SCHEMA 1/2

postgres=# CREATE PUBLICATION sales_publication FOR TABLES IN SCHEMA marketing, sales;

CREATE PUBLICATION

postgres=# SELECT oid, pnpubid, pnnspid::regnamespace FROM pg_publication_namespace;

 oid | pnpubid | pnnspid

-------+---------+------------

 16450 | 16449 | marketing

 16451 | 16449 | sales

(2 rows)

● One or more schemas can be specified in FOR TABLES IN SCHEMA.

● This information is maintained in the pg_publication_namespace catalog table:

● During the initial table synchronization, only tables that belong to the specified
schema are copied to the subscriber.

● When sending the incremental transaction changes, publisher will check if this
transaction’s relation belongs to one of the schemas and publish only those changes.

39 © Fujitsu 2024Fujitsu-Public

Replicating TABLES IN SCHEMA

● If the subscription has several publications in which some publication is defined for all
table, then all tables publication will be given higher precedence and all the table data
will be sent to subscription.

● Any new table created in the schema after creation of publication will be
automatically added to the publication.
● Similarly, tables removed from the schema will be automatically removed from the

publication.
● But data of newly created tables (after creation of subscription) will not be replicated

automatically - the user will have to run ALTER SUBSCRIPTION … REFRESH
PUBLICATION, which will fetch the missing tables and take care of synchronizing the
data from the publisher.

● ALL TABLES replication is similar to TABLES IN SCHEMA publication, except that it will
replicate all tables data instead of replicating only the tables present in the schema.

2/2

40 © Fujitsu 2024Fujitsu-Public © Fujitsu 2024

Appendix

Recommended reading:

● Logical Replication Tablesync Workers

● Logical replication of tables in schema in PostgreSQL 15

● How to gain insight into the pg_stat_replication_slots view
by examining logical replication

● Column lists in logical replication publications

● Introducing publication row filters

● Addressing logical replication conflicts using ALTER SUBSCRIPTION SKIP

https://www.postgresql.fastware.com/blog/logical-replication-tablesync-workers
https://www.postgresql.fastware.com/blog/logical-replication-of-tables-in-schema-in-postgresql-15
https://www.postgresql.fastware.com/blog/how-to-gain-insight-into-the-pg-stat-replication-slots-view-by-examining-logical-replication
https://www.postgresql.fastware.com/blog/how-to-gain-insight-into-the-pg-stat-replication-slots-view-by-examining-logical-replication
https://www.postgresql.fastware.com/blog/column-lists-in-logical-replication-publications
https://www.postgresql.fastware.com/blog/introducing-publication-row-filters
https://www.postgresql.fastware.com/blog/addressing-replication-conflicts-using-alter-subscription-skip

41 © Fujitsu 2024Fujitsu-Public

Thank you
Internals of logical replication
Vigneshwaran C

	Slide Number 1
	Slide Number 2
	Introduction
	Use cases
	Slide Number 5
	Publication
	Publication
	Publication
	Subscription
	Subscription
	Subscription
	Subscription
	Processes - Replication launcher
	Processes - Replication launcher
	Processes - Apply worker
	Processes - Apply worker
	Processes – Tablesync worker
	Processes - Walsender
	Processes - Walsender
	Processes - Walsender
	Replicating incremental changes
	Apply Worker Failure handling
	Apply Worker Failure handling
	Apply Worker Failure handling
	Altering a subscription
	How synchronous_commit is achieved
	How synchronous_commit is achieved
	Replication slot
	Replication slot
	Row filters
	Row filters
	Row filters
	Row filters transformation
	Column List
	Column List
	Column List
	Advantages of row filters and column list
	Replicating TABLES IN SCHEMA
	Replicating TABLES IN SCHEMA
	Appendix
	Slide Number 41

