
White paper Improving performance of data analysis without impacting business transactions

Page 1 of 8 fast.fujitsu.com

 Improving
performance of
data analysis with
Vertical
Clustered
Index

White paper - Improving performance of data analysis with Vertical Clustered Index

Page 2 of 8 fast.fujitsu.com

Improving performance of data analysis with
Vertical Clustered Index

Organizations are finding it increasingly
challenging to be responsive to business
requirements with the growth in volume and
variety of data they need to capture every year.

While databases have provided a number of
solutions to address these challenges, they fall
short in their ability to deliver satisfactory
performance of both business transactions and
analytical queries.

The reason is that the data architecture most
used in IT systems has been built with online
transaction processing (OLTP) in mind, which is
not suitable for efficient online analytic
processing (OLAP).

As a result, speed gains in one type of processing
come at the expense of the other.

This is particularly problematic as we enter an era
in which enterprise IT systems need to support
hybrid transactional analytical processing (HTAP)
workloads to help businesses make more timely
decisions.

This white paper discusses how keeping both row
data and columnar data can deliver significant
performance gains by providing the means for
fast aggregation of large data sets without
impacting online business transactions.

White paper - Improving performance of data analysis with Vertical Clustered Index

Page 3 of 8 fast.fujitsu.com

Executive Summary

One of the driving forces behind business innovation is
utilization of information to gain insight on your business and
respond accordingly. This is made all the more challenging by
the fact that we currently generate 10 zettabytes (trillion
gigabytes) of data every year, with this number projected to
increase to 180 zettabytes in 2025. [1] This means that IT
systems will need to adapt, not only to keep pace with
exponential data generation, but also to be able to quickly
analyze larger and larger amounts of data.

On top of that, the decentralization of IT systems mean that
more users have access to this data, and require different
views of different subsets of it to perform their jobs.

In spite of that, organizations will need to be able to quickly
aggregate gathered data for analysis, to make faster business
decisions and quickly identify business opportunities in order
to remain competitive.

Introduction

The demand to quickly perform data analysis is an important
element for information utilization in recent years, and as
result IT systems are under pressure to provide high-volume
data manipulation. It is no longer acceptable to have to wait
for several hours while data aggregation/manipulation
processes run before the result can be used for business
intelligence.

Being able to obtain real-time information quickly and often,
and swiftly reflect that to the business often impacts the
ability to quickly perform transactions, but as we will see in
this paper, this need not be the case.

This creates the need for a single database system that can
efficiently handle both large amounts of data transactions
and data analysis of large amounts of data, bridging the gap
between the solutions tailored for either operation.

In contrast to row-oriented data, which is best suited for
OLTP, column-oriented data is best suited for data analysis.
But the problem is that this architecture slows performance
of data insertion/update/deletion.

Row-oriented architecture

Talking about database systems is almost synonymous with
talking about row-oriented data structures, given their
prevalence in database architectures. Historically, this has
always been the case, and the reason for their dominance is
how well they address the needs of most organizations when
it comes to their bottom line - doing business.

Strengths

Whether for customer data, sales history, or payment details,
horizontal orientation is the most efficient way to store data
on disk and to retrieve it. The reason is that the attributes
(columns) will be laid out adjacent to each other, thus
minimizing the amount of disk seeks for read/write, which are
significant bottlenecks in time-critical and data-intensive
applications. To store or retrieve all attributes of a certain
customer, for example, a single disk seek will be required.

Caveats

This data layout creates a problem when an application needs
to access only one attribute or group of attributes of
hundreds or thousands of customers. In theory, the size of the
pages read would grow linearly in tandem with the number of
data points accessed.

In reality, this situation is circumvented by creating an index
on those attributes, which provides an alternative, smaller
data set to read from.

Indexes on row-oriented data (reading data)

To ensure high performance, an index must be created for
each attribute or group of attributes that is the target of
aggregation. This greatly deteriorates performance, as
database modifications require the ensuing update of several
indexes until the modification is deemed complete.

Indexes on row-oriented data (writing data)

As applications are created and modified to meet new
requirements, DBAs must reassess whether indexes must be
created or modified, and which ones are no longer necessary
and must therefore be deleted.

White paper - Improving performance of data analysis with Vertical Clustered Index

Page 4 of 8 fast.fujitsu.com

Introducing column-oriented architecture

Another approach to storing data is to use vertical
orientation, storing tuple attributes adjacently.

Using this architecture, scans do not read unnecessary data
pertaining to attributes that are not part of the aggregation.
Conversely, OLTP operations are impacted, since attributes of
a tuple will be dispersed in different areas of the disk,
requiring time-consuming disk seeks to access the tuple.

Column-oriented data

Having defined a columnar index for a table, it can be used in
various aggregation patterns, but unlike for OLTP, it is not
necessary to create an index for each aggregation pattern
used - you need to specify only one indexed column in the
pattern to have the index used. This reduces both the cost
associated with OLTP index management and the overhead
of update operations.

Another advantage of column stores is that they increase the
degree of similarity between adjacent records when
compared to row stores, thus allowing for better data
compression. [2]

Background, outlook

Column-oriented architecture has been receiving more
attention and consideration recently as an alternative or
addition to row-oriented databases, due to their capacity to
provide better speed for scanning and aggregating large
volumes of data.

Adoption of these databases has been impacted by the fact
that row-oriented data is not automatically reflected to its
column-oriented counterpart and that the size of the column-
oriented data is constrained by installed memory. Moreover,
while it solves the issue of data analysis performance, it
introduces the problem of data update overhead resulting
from the resulting update of indexes.

To work around this inherent conflict, the solution is to store
both row-oriented and column-oriented data, so that the
system is optimized for both OLTP and OLAP workloads. [3]
But most implementations of this solution do not
automatically reflect changes to the row-oriented data to the
column-oriented data and are affected by memory
constraints.

Fujitsu Enterprise Postgres' Vertical Clustered Index

Developed by Fujitsu Laboratories Ltd, Vertical Clustered
Index (VCI) is Fujitsu's proprietary implementation of In-
Memory Columnar Index.

VCI uses a parallel-processing engine that does not depend
on memory capacity, so it instantly updates column-oriented
data in response to changes in row-oriented data, and
processes column-oriented data quickly. Developers can
write their applications without giving special consideration
to whether the storage method is row-oriented or column-
oriented.

The engine is designed for column-oriented data, and as a
consequence, our tests show that for a 280 GB dataset on a
56-core Linux node, this results in almost 5 times the
throughput of analytical queries while maintaining equivalent
transaction volumes. Even on smaller computer systems with
little memory, this technology enables real-time data analysis
reflecting the latest data.

VCI data is stored in its own dedicated portion in the shared
buffer value, containing row data for OLTP, and the engine
ensures that consistency is maintained between them via
asynchronous updates.

Maintaining data integrity

In a hybrid architecture consisting of both data orientations,
row data must be converted to columnar data, which affects
OLTP performance. To solve this issue, Fujitsu's Vertical
Cluster Index provides two storage areas: the Write
Optimized Store (WOS) for row data and the Read Optimized
Store (ROS) for columnar data.

During updates, data is written only to the WOS, without data
compression or indexing, in order to avoid overhead caused
by conversion to columnar orientation. To further increase
performance, only "record ID" and VCI-indexed columns are
written to the WOS. After a certain amount of data is written
to the WOS, it is asynchronously converted to columnar data
and written to the ROS using compression and indexing.

By separating the synchronous process of storing OLTP data
this way, the overhead of conversion to columnar data is
avoided, allowing the engine to strike a balance between
data synchronization and OLTP and OLAP performances.

White paper - Improving performance of data analysis with Vertical Clustered Index

Page 5 of 8 fast.fujitsu.com

Asynchronous conversion of WOS row data to ROS columnar data

When data aggregation is performed the WOS and the ROS
are combined to reflect the current table data. From row-
oriented data stored in the WOS, a temporary area with
columnar data is created in the SQL processor: the Local ROS.
This is compared against the ROS data already converted to
columnar data to judge visibility/invisibility of each record. By
performing aggregation using this resulting data set, the
query result is the same as if OLTP data had been used.

The columnar data processing engine performs scan,
aggregation, and analysis using memory buffers to achieve
improved performance. This means that immediately after a
system restart the columnar data will not be available, since it
will have been wiped out from memory. To resume
operations, columnar data will need to be loaded again. If this
information were kept only in memory, table data would need
to be converted to columnar data again and then loaded. To
avoid performing again this time-consuming conversion, VCI
keeps columnar data on the disk as well, which can then be
immediately copied to memory after the system restart.

Another benefit of also keeping columnar data on disk is that
if data overflows from the buffer during operation, the engine
can access disk data instead, so that performance levels are
maintained without obvious deterioration.

Analysis engine optimized for columnar data

Columnar data improves read performance for aggregation,
but by itself it does not make the most of the benefits that
this architecture can offer.

Local ROS contains WOS data converted to columnar data

With VCI, Fujitsu developed an analysis engine that can apply
the same manipulation process simultaneously to multiple
columns (vector processing), thus improving performance
even more. Also as a parallel-analysis mechanism, Fujitsu
developed a new shared-memory structure so that multiple
processes operating in parallel can hand off data with little
slowdown.

Creating a vertical index

To create columnar data for one or more attributes, create a
VCI index:

CREATE INDEX vci_item_type

ON sale_hist

USING vci (item, type)

WITH (stable_buffer=true);

White paper - Improving performance of data analysis with Vertical Clustered Index

Page 6 of 8 fast.fujitsu.com

Having created columnar data, the application can perform
aggregation in the usual way, without having to specify which
index or data orientation to use - this will be left to the
execution plan (more on that later).

SELECT item, SUM(qty)
FROM sale_hist

GROUP BY item, type;

The advantage of this approach is that the organization is
likely to already have applications that perform aggregations
using the syntax above, and those will not need to be
changed to use columnar data.

Using the query planner to estimate execution time

Before performing the aggregation, the query planner
calculates the execution cost and chooses the most efficient
plan accordingly, determining whether the VCI will be used.

The execution plan and estimated time can be displayed:

EXPLAIN ANALYZE SELECT item, SUM(qty) FROM sale_hist

 GROUP BY item, type;

 QUERY PLAN

Custom Scan (VCI Aggregate)

 (cost=19403.15..19403.16 rows=991261 width=47)

 (actual time=58.505..58.506 rows=100 loops=1)

 Allocated Workers: 4

-> Custom Scan (VCI Scan) using vci_item_type on
sale_hist (cost=0.00..16925.00 rows=991261 width=47)
Planning time: 0.151 ms

Execution time: 86.910 ms

Conclusion

By providing data in columnar form in addition to row-
oriented form, performance of OLAP operations can be
drastically improved with no impact to OLTP operations. But
this additional data orientation by itself is not enough to
provide the best possible results - additional requirements
need to be catered for, as follows.

• An efficient and reliable asynchronous synchronization
method must be put in place to quickly convert row-
oriented data to columnar data without affecting business
transactions.

• Columnar data must be stored on disk as well as in
memory, to address buffer overflows and system restarts.

Fujitsu's Vertical Clustered Index is a robust implementation
of In-Memory Columnar Index that fully addresses these
requirements and offers a world-class solution for data
analysis of large data sets to support business intelligence.

References

1. Kanellos, Michael. (March 2016). "152,000 smart devices every
minute in 2025: IDC outlines the future of smart things" (Forbes)

2. Abadi, Daniel, Samuel Madden, and Miguel Ferreira. (June 2006)
"Integrating compression and execution in column-oriented
database systems"

3. Arulraj, Joy, Andrew Pavlo, and Prashanth Menon. (June 2016)
"Bridging the archipelago between row-stores and column-stores
for hybrid workloads."

In summary

Vertical Clustered Index is an efficient and reliable asynchronous method designed to quickly
convert row-oriented data to columnar data without affecting business transactions.

By separating the synchronous process of storing OLTP data this way, the overhead of conversion
to columnar data is avoided, allowing the engine to balance data synchronisation and OLTP and
OLAP performances.

As a result, what was once a primarily OLTP database can now service both operational and
analytical transactions, allowing you to run HTAP workloads.

https://www.forbes.com/sites/michaelkanellos/2016/03/03/152000-smart-devices-every-minute-in-2025-idc-outlines-the-future-of-smart-things/#3a91a2054b63
https://www.forbes.com/sites/michaelkanellos/2016/03/03/152000-smart-devices-every-minute-in-2025-idc-outlines-the-future-of-smart-things/#3a91a2054b63
http://db.csail.mit.edu/projects/cstore/abadisigmod06.pdf
http://db.csail.mit.edu/projects/cstore/abadisigmod06.pdf
http://www.pdl.cmu.edu/PDL-FTP/Database/arulraj-sigmod2016.pdf
http://www.pdl.cmu.edu/PDL-FTP/Database/arulraj-sigmod2016.pdf

White paper - Improving performance of data analysis with Vertical Clustered Index

Page 7 of 8 fast.fujitsu.com

Fujitsu Enterprise Postgres can help your journey
Fujitsu Enterprise Postgres is the enhanced version of PostgreSQL, for enterprises seeking a more robust,

secure, and fully supported edition for business-critical applications.

It is fully compatible with PostgreSQL and shares the same operation method, interface for application
development, and inherent functionality. Designed to deliver the Quality of Service (QoS) that
enterprises demand of their databases in the digital world, while supporting the openness and

extensibility expected of open source platforms, all at a lower cost than traditional enterprise databases.

Fujitsu Enterprise Postgres
for Kubernetes

Utilize operator capabilities
for provisioning and

managing operations on the
OpenShift Container

Platform.

Business-ready database
that integrates container
operation technology for
rapid development-to-

production deployments.

Fujitsu Enterprise Postgres

Combine the strengths of
open-source PostgreSQL

with the enterprise
features developed by

Fujitsu.

Enhanced speed, security,
and support — without

the costs associated
with most proprietary

systems.

Fujitsu Enterprise Postgres
on IBM LinuxONE™

World-class platform that
embraces open source

and improves data
security, performance,

and business continuity.

The best of open source
flexibility with the peace
of mind that comes from
knowing it is backed by

Fujitsu and IBM.

Fujitsu Enterprise Postgres
on IBM Power®

Experience frictionless
hybrid cloud that can help
you modernize to respond

faster to business
demands.

Fujitsu database designed
for security, performance,
and reliability, combined
with IBM server built for

agility in the hybrid cloud.

https://fast.fujitsu.com/fujitsu-enterprise-postgres-for-kubernetes
https://fast.fujitsu.com/key-features-in-fujitsu-enterprise-postgres
https://fast.fujitsu.com/fujitsu-enterprise-postgres-on-ibm-linuxone
https://fast.fujitsu.com/fujitsu-enterprise-postgres-on-ibm-power

White paper - Improving performance of data analysis with Vertical Clustered Index

Page 8 of 8 fast.fujitsu.com

 .

Discover how Fujitsu Enterprise Postgres' unique and
enhanced features take PostgreSQL to the next level
to provide enterprise-grade security, scalability,
security, and performance.

Visit fast.fujitsu.com/key-features

Copyright 2022 FUJITSU AUSTRALIA SOFTWARE TECHNOLOGY. Fujitsu, the Fujitsu logo and Fujitsu brand names are trademarks or
registered trademarks of Fujitsu Limited in Japan and other countries. Other company, product and service names may be trademarks or
registered trademarks of their respective owners. All rights reserved. No part of this document may be reproduced, stored or transmitted
in any form without prior written permission of Fujitsu Australia Software Technology. Fujitsu Australia Software Technology endeavors to
ensure the information in this document is correct and fairly stated, but does not accept liability for any errors or omissions

Contact
Fujitsu Limited
Email: enterprisepostgresql@fujitsu.com
Website: fast.fujitsu.com

2022-09-01 WW EN

https://fast.fujitsu.com/key-features
https://fast.fujitsu.com/key-features
https://fast.fujitsu.com/

	Executive Summary
	Introduction
	Row-oriented architecture
	Strengths
	Caveats
	Introducing column-oriented architecture
	Background, outlook
	Fujitsu Enterprise Postgres' Vertical Clustered Index
	Maintaining data integrity
	Analysis engine optimized for columnar data
	Creating a vertical index
	Using the query planner to estimate execution time

	Conclusion
	References
	Fujitsu Enterprise Postgres can help your journey

