

Page 1 of 12 fast.fujitsu.com

 High availability -

Solutions and
implementations

White paper

White paper - High availability - Solutions and Implementations

Page 2 of 12 fast.fujitsu.com

High availability -
Solutions and implementations

With ever-increasing pressure to remain
online and attend to customer needs, IT
systems need to constantly review and
adapt their solutions on how to cope with
system failures and resume operation in the
shortest amount of time, with minimum to
no material/data loss. This is reflected in
the variety of High Availability solutions
available and number of business case
scenarios that they address.

This white paper provides an overview
of the operation and implementation of
various High Availability (HA) solutions
that address individual business issues
that organizations face. The
implementation of available solutions
is discussed using PostgreSQL's native
replication technology, with third-party
utilities when a limitation exists in the
native solution.

White paper - High availability - Solutions and Implementations

Page 3 of 12 fast.fujitsu.com

Introduction

The readers of this document are advised to assess each
implementation against their business requirements
before proceeding to deploy any of them to a production
environment.

The readers are also advised to direct any queries
regarding this publication to their Fujitsu Sales
representative so they can be addressed by one of our
PostgreSQL consultants.

Background

The evolution of business requirements has resulted in
changes and enhancements to Information Technology
software and hardware. The general high availability
requirements have included ease of management, safety
against data loss, fault tolerance, instant recovery,
robustness, security, data integrity, data redundancy, and
minimal downtime during maintenance.

This white paper discusses how high availability, using
PostgreSQL and other related third-party utilities, can be
utilized to tackle some of the difficulties that
organizations face in making databases always available
to satisfy their requirements.

A complete high availability solution for databases should
be able to target factors such as high resilience, data
consistency, and instant availability following a failure for
business continuity. Some of the major requirements of
HA solutions also include load sharing and balancing, and
fast failover versus controlled switchover, which dictate
how a database system should be configured for
performance, data protection and availability.

High Availability requirements

In order to function continually without breakdown, an
online business requires high availability of its IT systems
and databases.

In turn, to be continuously available for business
continuity, a database should be fault-tolerant and robust
to withstand failures. Fault tolerance and robustness are
achieved by configuring a high availability system in one
of the ways discussed in this white paper to satisfy
business requirements.

Disaster recovery

Disaster recovery (DR) is the capability to bring an IT
system back online following an outage. In terms of
database technology, this translates to ensuring that a
database is fully recovered following a failure.

A mission-critical database system should always be
available to satisfy requests from applications at all times.
This literally means "zero downtime", which is only
achieved by maintaining a secondary copy of the
database in a different location, ready to satisfy
application requests in case the primary copy fails to
come online in a given timeframe. The secondary copy is
kept in standby mode, and offers an ideal disaster
recovery configuration. Synchronization of the secondary
copy with the primary database is kept with the help of
replication.

An appropriately configured DR database ensures very
tight and short Recovery Point Objective (RPO) and
Recovery Time Objective (RTO) targets resulting in
minimal data loss and quick recovery.

● RPO: Measure of minimizing the amount of data loss.

● RTO: Measure of minimizing the time taken to perform
database recovery.

Load sharing and balancing

This is the distribution and balancing of processing over
two or more systems to achieve optimal resource
utilization.

Highly critical databases are often required to respond to
a considerable number of READ queries and at the same
time execute a substantial number of WRITE transactions.
READs and WRITEs will be performed concurrently, and
the database will experience an immense load to satisfy
the application requests. This will result in resource
contention, followed by performance degradation and
server crashes.

A perfect solution to alleviate this problem is to separate
READs from WRITEs. High-volume READs generally occur
when large reports such as month-end, quarterly, half-
yearly and annual reports are generated, all of which tend
to be resource-consuming and take a long time to
process.

Enterprise database systems demand high availability - systems should be
tolerant of failures and operate stably at all times. General high availability
requirements include ease of management, safety against data loss, fault
tolerance, instant recovery, robustness, security, data integrity, data
redundancy, and minimal downtime during maintenance.

White paper - High availability - Solutions and Implementations

Page 4 of 12 fast.fujitsu.com

On the other hand, WRITEs generally occur during normal
processing of a business, such as when new customers
register themselves in the system, records are updated, or
discontinued products are deleted, all of which require a
short time to process, and are instantaneous and
concurrent.

Routing all READs to a real-time replicated copy of the
database will ensure that resources are not locked,
thereby allowing WRITEs to occur on demand on the
primary database.

Sharing and balancing the load is also beneficial for
horizontal scalability, when a business grows across
multiple geographical regions thus requiring additional
databases, either in the form of one-to-many or cascaded
configuration. It ensures that operations are balanced
based on load across synchronized databases.

Instant failover

This requirement refers to the capability to bring a
replicated system online without delay following a crash
of the primary system.

A database may suffer an outage at any time and crash
due to power supply disruption, hardware failure, software
component error, or simply as a result of human mistake.
The amount of time that will be required to bring the
database back online will depend on the severity of the
failure.

If the cause of the server crash was due to power failure,
then it can be rectified immediately by restarting the
database, but even such a short-lived outage can cause a
significant loss to the business. On the other hand, if the
failure is caused by any of the other factors mentioned
above, then the outage may be longer, ranging from
hours to days.

A copy of the database, configured to immediately
assume the role of primary database in such an event
minimizes the business risk and downtime, satisfying the
instant failover requirement of a database system.

Controlled switchover

This is the manual process of switching over an IT system
to a replicated system.

IT software systems are upgraded and patched to latest
versions to address any discovered security vulnerabilities,
increase processing power for efficiency and enhance
programing code, or to just include additional
functionality. Some of these operations can take from a
couple of minutes to a few hours, and a database server,
being a software component, cannot afford to be
unavailable for that long.

A real-time replicated database system configured for
this purpose should be able to switch over between a
primary system and standby one instantly without
malfunction, and later switch back to the initial
configuration.

This manual switchover and switchback of the database
paves way for maintenance tasks such as rolling patches
and upgrades. A faster switchover-backed highly available
database system offers maximum serviceability and 100%
uptime.

High availability modes

The High Availability requirements discussed above can
be achieved using the replication modes explained below.
The replication modes satisfy one or more requirements
for business continuity and contingency planning.

Cold standby

In this mode the standby database system will be in an
inactive state, which will be started when the master
system crashes following a major failure of hardware,
software, power supply or the complete site. This involves
copying nightly backups of the master database to a
standby server and copy the transaction logs (WAL) until
the next complete backup set is copied over.

In the event of a failure of the master database, the
standby database will be initiated in recovery mode and
all available transaction logs will be applied up to the
current point in time, to recover it to be as close a copy of
the master database as possible at the point of failure.

Organizations must ensure the availability of their systems in order not only to
disrupt operations, but also to avoid losing revenue, damaging their
reputations, and frustrating users, who may take to social media to voice their
complaints, further amplifying the problem.

White paper - High availability - Solutions and Implementations

Page 5 of 12 fast.fujitsu.com

There are no particular advantages of this mode over the
other ones. It was the only disaster recovery mode that
was available in the past, and had a major drawback in
that it would take a long time for the database to be
brought online, due to the large amount of transaction
logs that needed to be applied to make it a current copy
of the master database from the previous night’s backup.

This technique is outdated and has been superseded by
other implementations, listed below.

Cold standby

Warm standby

This is similar to the previous method, except that the
standby database will be online, and the transaction logs
will be continuously applied. This type of replication is
also called "Log Shipping", as the transaction logs from
the master are copied over to the slave and applied
during normal operation.

Warm standby (normal operation)

The advantage of this mode over cold standby is that the
standby database is readily available to be failed over and
made the new master database. However, the application
will still need to be pointed to the new server, which
might increase the RTO.

This limitation can be minimized with a floating IP address
or a load balancer module which will become the single
point of connection for the application. The load balancer
will further decide whether to route incoming
connections to the old master or the new one.

Although this mode satisfies the disaster recovery
configuration of a HA system, there is still a major
limitation of resource utilization due to the fact that in
PostgreSQL implementation a slave server is not
accessible even to read-only queries, which results in an
idle server having the best of compute capacity not being
operational.

This limitation is solved in the replication mode we will
discuss next.

Warm standby (after failure)

Hot standby

The primary objective of the hot standby mode is to
address resource utilization, which was a limitation in
warm standby. In this PostgreSQL setup, updated
transactional records are continuously applied to the
slave and it is also available for read-only queries. Such a
standby with near real-time data and highest compute
capacity can be utilized to generate complex reports
during normal business hours, without much impact to the
master database.

This effectively provides a setup of a master database
that is busy executing OLTP load while the slave can be
utilized for OLAP reporting.

In PostgreSQL, hot standby is achieved with the help of a
"streaming replication" protocol, which allows the master
to stream transactional records (WAL records) to the
standby.

The primary objective of the hot standby mode is to address
resource utilization. In this PostgreSQL setup, updated transactional
records are continuously applied to the slave and it is also
available for read-only queries.

White paper - High availability - Solutions and Implementations

Page 6 of 12 fast.fujitsu.com

This eliminates the need to wait for transactional logs to
be completely filled with required data on the master, and
then copied over to the slave server and replayed to the
slave database.

Hot standby

This mode of HA satisfies both the disaster recovery and
the load balancing and sharing configurations, but a
customized failover mechanism can make it also satisfy
the other two HA configurations: instant failover and
controlled switchover.

Hot standby can run in either ASYNC or SYNC modes.

● In ASYNC mode, transactional data is streamed in a
discontinuous (asynchronous) manner.

Real-time replicated data can be achieved in such a
setup, but it is not always guaranteed on very busy
databases.

● In SYNC mode, transactional data is streamed
synchronously from master to standby.

Unlike ASYNC, a master database replicating data to a
synchronous standby slave waits for
acknowledgement that each transaction committed
on the master has been replayed on the synchronous
slave. This may cause the database system to have
reduced serviceability.

For instance, a two node master-standby setup using
synchronous replication is likely to fail in case the
network link between the master and the synchronous
slave goes down - if this happens, the master is forced
to wait for the unreachable slave.

This will cause the master to wait indefinitely for
transactional data to be applied and acknowledged by
the slave before continuing to the next transaction.

Types of streaming replication

Streaming replication has a drawback, in that it may
delete a transaction log from the master server without
having copied and applied some of its records to the
standby slave.

This can be addressed by Replication Slot. A replication
slot ensures that no transaction log is deleted from the
master while it may still be required by a standby slave,
thereby diminishing the possibility of a standby slave
becoming out of sync due to a missing log.

Logical replication

In this type of replication, the master sends individual
transactions to the slave via a replication slot using the
logical replication protocol.

Logical replication allows fine-grained control over both
data replication and security, and uses a publisher-
subscriber mechanism where the publisher is a master
database and the subscriber is a standby slave receiving
transaction commits.

Unlike the other replication modes, logical replication can
be implemented between a master and standby slave of
different major versions of PostgreSQL, starting from
version 10 onwards. Additionally, logical replication is
possible for just a database or a subset of a database,
rather than for the entire database cluster, which is
another limitation of the other replication modes.

Logical replication allows fine-grained control over both data replication
and security, and uses a publisher-subscriber mechanism where the
publisher is a master database and the subscriber is a standby slave
receiving transaction commits.

White paper - High availability - Solutions and Implementations

Page 7 of 12 fast.fujitsu.com

It is possible to implement bi-directional replication using
this mode, however the likelihood of query conflicts
increases if the same data is configured to replicate in a
bi-directional manner. Another potential issue is that
there may be a delay in propagating committed changes
to the destination.

Logical replication

This mode satisfies both the disaster recovery and the
load sharing and balancing requirements, and allows the
system to do without instant failover and controlled
switchover to achieve high availability. This is because
both the primary and standby databases respond to
READs and WRITEs seamlessly when the data being
accessed does not create conflicts.

If the application can switch between the primary and
standby databases, because both the databases are open
in READ-WRITE mode, then implementation of instant
failover and controlled switchover can be ignored, and
the application will eventually end up connecting to the
server that is live and responding.

High Availability implementation

High Availability can be achieved in one of the following
ways

● Active-passive (master-slave) database system

● Active-active (multimaster) database system

Let us discuss these modes and how to achieve them in
PostgreSQL in conjunction with addressing some of the
metrics already mentioned.

Active-passive database system

Since IT systems have evolved with the growth of
business and the requirement of having disaster recovery
to resume business following a failure, active-passive IT
systems satisfied these demands and fulfilled some, if not
all, metrics mentioned earlier.

A PostgreSQL database instance can be configured in one
of the following setups.

● Single master replicating data to a single slave

● Single master replicating data to multiple slaves

● Single master replicating data to a single slave which
further cascades it to other slaves

Each active-passive setup implementation in PostgreSQL
has one or more advantages over its immediate previous
setup, and sometimes it even makes the previous setup
obsolete. We discuss each setup and its characteristics
below.

An application component can be configured in front of
the databases so queries/transactions are routed to the
appropriate databases based on the type of the
query/transaction.

Single master-single slave

A single master database (also known as primary)
replicates data to a single standby database (also known
as slave). This setup can be used in cold standby, warm
standby, hot standby, and logical replication.

Active-passive database system (single master, single slave)

As discussed under each implementation mode, it should
be carefully assessed in order to ensure that it satisfies all
business requirements, especially RTO and RPO. The best
implementation in this setup is either an asynchronous hot
standby or a logical replication.

A typical application type for this implementation would
be a retail business management or hotel management,
since the read-writes can occur on the master database,
while the replicated database can be utilized for report
generation. Although there is a buffer for the standby
database to be unavailable for a short time or lag behind
the master, occasional unavailability of the standby slave
does not impact the serviceability of the master database.

The options for implementation of high availability can become
complex depending on your organization's business requirements,
since each alternative has its own advantages and trade-offs - each
option must be carefully considered.

White paper - High availability - Solutions and Implementations

Page 8 of 12 fast.fujitsu.com

Failure of the master when the slave is unavailable can be
disastrous, because the slave could be lagging behind the
master from a few hours to more than a day, which may
pose a real threat to business continuity.

Single master-multiple slaves

A single master database replicating to multiple slaves is
the best redundant system that applications can be
configured with. This can be implemented with hot
standby or logical replication.

This setup can be achieved in one of the following ways:

● One master replicating to two asynchronous slaves

● One master replicating to one synchronous slave and
one asynchronous slave.

In both configurations, one of the slaves can run on the
same data center as the master while the other runs in a
different site, to eliminate the possibility of a single point
of failure.

Active-passive database system (single master, multiple slaves)

Any application that is required to process a large volume
of transactions, such as a banking system, stock exchange
application or e-commerce portal is a use case of this
type of setup.

A master database will always be available for OLTP, while
a real time replicating slave database could be a potential
new master during an imminent failover. There is no limit
to the number of slaves that can be added to a master,
regardless of whether it is replicating synchronously or
asynchronously.

This setup offers the maximum levels of database
availability, performance, and data protection.

Single master-cascaded slaves

This type of setup is an extension of the previous
implementation, in which a cascading slave is added
either to the slave replicating asynchronously or to the
one replicating synchronously.

The cascading slave relies on its upstream master (first
level slave database) for transaction consistency.
Additionally, the cascaded slave can only be configured
to perform replication in asynchronous mode from its
upstream master.

Active-passive database system

(single master, single slave to cascaded slave(s))

A simple way to remember which replication method can
be set up for a slave is: if it is accepting data from the
actual master, then it can be either asynchronous or
synchronous. But if it is accepting data from another slave
in a cascaded (upstream) manner, then the replication
between these two slaves can only be set up as
asynchronous.

As this is an extension of the previous setup, any
application use case for the previous setup can be
considered for this type of setup as well. There is a
disadvantage in this setup regarding data lag - the
cascaded replicating slave experiences a longer lag than
its upstream standby slave, should the upstream standby
slave lag behind the master.

Active-active database system

This is a multimaster setup that offers greater availability
and extra resilience. It fulfils all metrics of a High
Availability environment and checks all boxes when the
business operation requirements are assessed against the
IT system.

The active-active database setup allows writes from any
node of the cluster. It makes it manageable for horizontal
scalability to grow the cluster by adding nodes as
business requirements evolve.

Business continuity, which includes Disaster Recovery and High
Availability, can be defined as the ability to continue application
operations even after outage, regardless or whether they are
planned or not.

https://fast.fujitsu.com/postgresql-insider

White paper - High availability - Solutions and Implementations

Page 9 of 12 fast.fujitsu.com

Active-active database systems should have an
uninterrupted conflict detection and resolution
mechanism in order to reflect the same version of data
from any connected node.

This ensures high levels of data integrity during updates
regardless of which node the updates originate from, so
all participating nodes see the same data.

Asynchronous multimaster

Each server works independently, and periodically
communicates with other servers of the cluster to identify
conflicting transactions. Conflicts are either resolved by
users or conflict resolution rules.

Synchronous multimaster

Each server is capable of handling write requests.
Modified data is transferred from the server that handled
the request to the other servers before the transaction is
committed. This results in excessive table locks during
heavy write load and may lead to poor write performance.
Read performance is not affected, because read requests
can be routed to and handled by any individual server.

To address this issue, some solutions use shared disk to
minimize inter-node transfer overhead. This also
eliminates the need to deploy workload partitioning or
load balancer components.

Active-active database system (multimaster replication)

PostgreSQL does not offer this type of setup, but some
tools make it achievable, as explained below.

An active-active database system can be implemented as
follows.

Bucardo

Bucardo is an open source asynchronous replication
system that implements a trigger-based solution with a
Perl daemon that monitors requests and copies data back
and forth between participating databases.

It manages a Bucardo database that acts as an inventory
repository containing the replication rules, list of
participating databases, details of connection to the
databases, tables or database subsets being replicated,
etc.

The replication rules are called "SYNCS", and are defined
to copy the specific set of tables across the participating
databases. The triggers defined on the replicating tables
or subset of database store information about which rows
were changed and should be sent to other participating
databases.

There are limitations, such as neither DDLs nor very large
objects are supported. Also, tables being replicated need
a unique key defined on them, otherwise incremental
replication of tables is not possible.

Bi-directional replication (BDR)

This is an asynchronous multimaster logical replication
topology that can propagate committed writes from any
participating database to all other participating
databases. The writes are sent on a row-by-row basis.
Each participating database in this mode is referred to as
a node.

This topology can only be implemented from PostgreSQL
9.4 version onwards, and requires modification to the
source code. Applications also require modifications to
operate on a multimaster BDR setup, because they cannot
be written as if they were connected to a single
standalone server or single master system.

Data is not exactly the same on the participating nodes at
any given point in time, because writes on a node are
propagated to other nodes only after a commit on the
original node.

The active-active database setup is a multimaster setup that offers
greater availability and extra resilience. It allows writes from any node
of the cluster, and makes it manageable for horizontal scalability to
grow the cluster by adding nodes as business requirements evolve.

https://fast.fujitsu.com/postgresql-insider

White paper - High availability - Solutions and Implementations

Page 10 of 12 fast.fujitsu.com

So, as long as the writes have not been committed on the
original node, all other nodes will not see the most
current version of data. This implementation utilizes the
logical decoding feature to replicate across nodes.

Active-active database system

(bi-directional replication)

Fujitsu Enterprise Postgres and High Availability

Fujitsu Enterprise Postgres is a PostgreSQL-based, highly
reliable RDBMS, and is one of the fastest and most secure
enterprise databases available. As a world-class mission-
critical database, it ticks all the boxes of the HA
configuration requirements.

● Disaster recovery: It is built on top of the native
PostgreSQL streaming replication, which offers an
excellent disaster recovery replica with real-time data
synchronization.

● Instant failover: Managed by the flagship Mirroring
Controller, it detects failures of server process,
operating system, network, and disk to initiate failover
from primary to standby.

Instant failover using Mirroring Controller

● Controlled switchover: Manual controlled switchover
can be performed as needed, while switchback can be
achieved with the help of an open-source tool such as
pg_rewind.

● Load sharing and balancing: Real-time data
synchronization allows load sharing and balancing for
READs and WRITEs.

● Connection Manager: The process provides heartbeat
monitoring and transparent connection features -
applications are able to connect to the appropriate
database server without having to be aware of the
server state.

Transparent connection using Connection Manager

Conclusion

We hope that this white paper gave you a better
understanding of the various possible implementations
for high availability, alongside their benefits as well as
their shortcomings.

Contact us

If you have any questions about how Fujitsu Enterprise
Postgres ensures your system is up and running, or would
like to discuss details of your data journey, feel free to
contact us at enterprisepostgresql@fujitsu.com.

About Fujitsu

Fujitsu is the 5th largest IT service provider in the world,
offering a full range of technology products, solutions,
and services. Around 126,000 Fujitsu employees support
customers in over 100 countries.

If you would like to read more about PostgreSQL and high
availability, we have a series of articles dedicated to the
topic in the PostgreSQL Insider section of our website - go to
fast.fujitsu.com/postgresql-insider

https://fast.fujitsu.com/postgresql-insider
https://fast.fujitsu.com/postgresql-insider

White paper - High availability - Solutions and Implementations

Page 11 of 12 fast.fujitsu.com

Fujitsu Enterprise Postgres can help your journey
Fujitsu Enterprise Postgres is the enhanced version of PostgreSQL, for enterprises seeking a more robust,

secure, and fully supported edition for business-critical applications.

It is fully compatible with PostgreSQL and shares the same operation method, interface for application
development, and inherent functionality. Designed to deliver the Quality of Service (QoS) that
enterprises demand of their databases in the digital world, while supporting the openness and

extensibility expected of open source platforms, all at a lower cost than traditional enterprise databases.

Fujitsu Enterprise Postgres
for Kubernetes

Utilize operator capabilities
for provisioning and

managing operations on the
OpenShift Container

Platform.

Business-ready database
that integrates container
operation technology for
rapid development-to-

production deployments.

Fujitsu Enterprise Postgres

Combine the strengths of
open-source PostgreSQL

with the enterprise
features developed by

Fujitsu.

Enhanced speed, security,
and support — without

the costs associated
with most proprietary

systems.

Fujitsu Enterprise Postgres
on IBM LinuxONE™

World-class platform that
embraces open source

and improves data
security, performance,

and business continuity.

The best of open source
flexibility with the peace
of mind that comes from
knowing it is backed by

Fujitsu and IBM.

Fujitsu Enterprise Postgres
on IBM Power®

Experience frictionless
hybrid cloud that can help
you modernize to respond

faster to business
demands.

Fujitsu database designed
for security, performance,
and reliability, combined
with IBM server built for

agility in the hybrid cloud.

https://fast.fujitsu.com/fujitsu-enterprise-postgres-for-kubernetes
https://fast.fujitsu.com/key-features-in-fujitsu-enterprise-postgres
https://fast.fujitsu.com/fujitsu-enterprise-postgres-on-ibm-linuxone
https://fast.fujitsu.com/fujitsu-enterprise-postgres-on-ibm-power

White paper - High availability - Solutions and Implementations

Page 12 of 12 fast.fujitsu.com

Copyright 2022 FUJITSU AUSTRALIA SOFTWARE TECHNOLOGY. Fujitsu, the Fujitsu logo and Fujitsu brand names are trademarks or
registered trademarks of Fujitsu Limited in Japan and other countries. Other company, product and service names may be trademarks or
registered trademarks of their respective owners. All rights reserved. No part of this document may be reproduced, stored or transmitted
in any form without prior written permission of Fujitsu Australia Software Technology. Fujitsu Australia Software Technology endeavors to
ensure the information in this document is correct and fairly stated, but does not accept liability for any errors or omissions

Contact
Fujitsu Limited
Email: enterprisepostgresql@fujitsu.com
Website: fast.fujitsu.com

2022-09-08 WW EN

Discover how Fujitsu Enterprise Postgres' unique and
enhanced features take PostgreSQL to the next level
to provide enterprise-grade security, scalability,
security, and performance.

Visit fast.fujitsu.com/key-features

https://fast.fujitsu.com/
https://fast.fujitsu.com/key-features
https://fast.fujitsu.com/key-features

	Introduction
	Background
	High Availability requirements
	Disaster recovery
	Load sharing and balancing
	Instant failover
	Controlled switchover

	High availability modes
	Cold standby
	Warm standby
	Hot standby
	Logical replication

	High Availability implementation
	Active-passive database system
	Single master-single slave
	Single master-multiple slaves
	Single master-cascaded slaves

	Active-active database system
	Asynchronous multimaster
	Synchronous multimaster
	Bucardo
	Bi-directional replication (BDR)

	Fujitsu Enterprise Postgres and High Availability
	Conclusion
	Fujitsu Enterprise Postgres can help your journey

