

Fujitsu
Enterprise
Postgres

Embedded SQL
in C and COBOL

Many companies still run legacy systems that they find to be too large, complex, or vital
to be rewritten using newer languages, especially since they have stood the test of time.
With Fujitsu Enterprise Postgres you can also avoid the risk and expense of porting older
code by reusing your C and COBOL programs with little to no modification.

About Fujitsu Enterprise Postgres
Founded on PostgreSQL, the world's most advanced open source
relational database system, Fujitsu Enterprise Postgres extends base
PostgreSQL functionality with a number of enhanced enterprise
features.

Why retain legacy systems?
Companies tend to invest in their ICT systems to ensure that they are
up to date with current technologies, so they can take advantage of
the latest advances in performance, usability, and security.

But the reality is also that companies may find the need to retain
legacy systems because they do not see enough justification to invest
in their overhaul. Several factors may contribute to this decision, such
as the fact that while not as up-to-date with current technologies, they
have stood the test of time, and are still running and performing the
job they have been created for. Other factors are the risk involved in
running the new solution rewritten for another language or
technology, and the financial investment required to do that.

C and COBOL still have a place in your organization
These languages have existed for several decades now, and proved
their versatility and robustness with millions of lines of code written
for all types of applications across multiple industries for all types of
organizations, from enterprises to small businesses.

Accessing PostgreSQL using C
Embedded SQL in C programs is precompiled by a library provided by
the PostgreSQL community, and replaced with special functions calls
using C language, so the result can be processed with any C compiler.

Accessing PostgreSQL using COBOL
Similarly, embedded SQL in COBOL programs is precompiled by
ECOBPG, a library provided by Fujitsu, so that its output can be
processed by any COBOL compiler.

.

Commands
All SQL commands can be executed from C and COBOL programs. The table below lists the commands available only via embedded SQL.

Fujitsu Enterprise Postgres - Embedded SQL in C and COBOL

Command Description Synopsis

ALLOCATE DESCRIPTOR Allocate an SQL descriptor area ALLOCATE DESCRIPTOR descId

CONNECT Establish a database connection CONNECT TO connTarget *1 [AS connName] [USER connUser]

CONNECT { connUsername | TO DEFAULT }

DATABASE connTarget *1

DEALLOCATE DESCRIPTOR Deallocate an SQL descriptor area DEALLOCATE DESCRIPTOR descId

DECLARE Define a cursor DECLARE curName [BINARY] [INSENSITIVE] [[NO] SCROLL]
CURSOR [{ WITH | WITHOUT } HOLD] FOR { preprdStmt | query }

DESCRIBE Obtain information about a prepared
statement or result set

DESCRIBE [OUTPUT] prepdStmt {USING|INTO} SQL*2 DESCRIPTOR descId

DESCRIBE [OUTPUT] prepdStmt INTO sqlDaName*3

DISCONNECT Close a database connection DISCONNECT [connName | CURRENT | DEFAULT | ALL]

EXECUTE IMMEDIATE Prepare and execute a statement EXECUTE IMMEDIATE stmt

GET DESCRIPTOR Get information from an SQL descriptor
area

GET DESCRIPTOR descId :hostVar = descHdrItem*4, ...

GET DESCRIPTOR descId VALUE colNum :hostVar = descItem*5, ...

OPEN Open a dynamic cursor OPEN curName [USING { val, ... | SQL DESCRIPTOR descId }]

PREPARE Prepare a statement for execution

PREPARE varPrepdStmt FROM sqlCmd

SET AUTOCOMMIT Set the autocommit behavior of the
current session

SET AUTOCOMMIT { = | TO } { ON | OFF }

SET CONNECTION Select a database connection SET CONNECTION [TO | =] connName

SET DESCRIPTOR Set information in SQL descriptor area SET DESCRIPTOR descId
{ descHdrItem*4=val , ... | VALUE descItemNum descItem*5=val, ... }

TYPE Define a new data type TYPE typeName IS ctype

VAR Define a variable VAR varName IS ctype

WHENEVER Specify the action when SQL causes a
condition to be raised

WHENEVER { NOT FOUND | SQLERROR | SQLWARNING } action

*1: connTarget for C is [dbName][@host][:port], tcp:postgresql://host[:port]/[dbName][?options], unix:postgresql://host[:port]/[dbName][?options], for COBOL it is
dbName@host:port, tcp:postgresql://host:port/dbName[?options], unix:postgresql://host[:port][/dbName][?options]

*2: The 'SQL' keyword is optional in C *3: Statement supported in C only
*4: descHdrItem identifies the header information to retrieve/set (only COUNT is supported at the moment) *5: descItem identifies the descriptor item to retrieve/set

Tasks

The table below shows how to use embedded SQL to perform the most common tasks when working with a database.

Category Task Synopsis*1
Manage
connections

Connect to server EXEC SQL CONNECT TO connTarget [AS connName] [USER user];

Choose connection EXEC SQL { SET CONNECTION connName | AT connName sqlCmd; };

Close connection EXEC SQL DISCONNECT [connName | DEFAULT | CURRENT | ALL];

Run SQL Execute SQL EXEC SQL cmd ;

Declare cursors EXEC SQL DECLARE curName CURSOR FOR sqlCmd ;

EXEC SQL DECLARE curName CURSOR FOR varPrepdStmt ;

Use cursors EXEC SQL OPEN curName [USING { val1, ... | SQL DESCRIPTOR descId }];
EXEC SQL FETCH curName INTO :hostVar1, ... ;
...
EXEC SQL CLOSE curName ;
EXEC SQL COMMIT;

Manage transactions EXEC SQL COMMIT [PREPARED txId];
EXEC SQL ROLLBACK [PREPARED txId];
EXEC SQL SET AUTOCOMMIT TO { ON | OFF } ;

Declare prepared statements EXEC SQL PREPARE varPrepdStmt FROM prepdStmt ;

Execute prepared statements EXEC SQL EXECUTE varPrepdStmt INTO :hostVar1, ...USING val ;

EXEC SQL EXECUTE prepdStmt USING SQL DESCRIPTOR descIdIn INTO SQL DESCRIPTOR descIdOut ;

Deallocate prepared statements EXEC SQL DEALLOCATE PREPARE varPrepdStmt ;

*1: SQL statements are terminated with semicolon in C, or with END-EXEC. in COBOL

Fujitsu Enterprise Postgres - Embedded SQL in C and COBOL

Category Task Synopsis

Dynamic
SQL

Statements without a result set EXEC SQL EXECUTE IMMEDIATE :varPrepdStmt;

Statement with a result set EXEC SQL EXECUTE varPrepdStmt INTO :var1, ... [USING val1, ...];

Use host
variables

Declare host variables EXEC SQL BEGIN DECLARE SECTION;
hostVarDeclaration
EXEC SQL END DECLARE SECTION;

EXEC SQL dataType varName = val ;*1

Retrieve query result into host variables EXEC SQL SELECT col1, ... INTO :hostVar1, ... FROM tbl ;

EXEC SQL FETCH NEXT FROM curName INTO :hostVar1, ... ;

Indicators EXEC SQL SELECT val INTO :hostVar :valInd*2 FROM test1 END-EXEC.

Use SQL
descriptor
areas *3

Allocate descriptor area EXEC SQL ALLOCATE DESCRIPTOR descId ;

Retrieve data into descriptor area EXEC SQL FETCH NEXT FROM curName INTO SQL DESCRIPTOR descId;

EXEC SQL FETCH numOfRows FROM curName INTO SQL DESCRIPTOR descId;

Obtain field data from descriptor area EXEC SQL GET DESCRIPTOR descId :hostVar = COUNT;

Obtain field metadata from descriptor area EXEC SQL GET DESCRIPTOR descId VALUE colNum :hostVar = field ;

Deallocate descriptor area EXEC SQL DEALLOCATE DESCRIPTOR descId ;

*1: For C only *2 :valInd will be negative if retrieved value is null, positive if it is truncated, or 0 otherwise *3: SQLDA is not supported by ECOBPG

Data mapping - C/COBOL ↔ PostgreSQL

PostgreSQL
data type

C host variable
data type

COBOL host variable
data type

smallint short PIC S9([1-4]) { BINARY | COMP | COMP-5 }

integer int PIC S9([5-9]) { BINARY | COMP | COMP-5 }

bigint long int PIC S9([10-18]) { BINARY | COMP | COMP-5 }

decimal decimal *1 PIC S9(m)V9(n) PACKED-DECIMAL
PIC 9(m)V9(n) DISPLAY *3
PIC S9(m)V9(n) DISPLAY
PIC S9(m)V9(n) DISPLAY SIGN { LEADING | TRAILING } [SEPARATE]

numeric numeric *1

real float COMP-1

double precision double COMP-2

smallserial short PIC S9([1-4]) { BINARY | COMP | COMP-5 }

serial int PIC S9([1-9]) { BINARY | COMP | COMP-5 }

bigserial long int PIC S9([10-18]) { BINARY | COMP | COMP-5 }

oid unsigned int PIC 9(9) { BINARY | COMP | COMP-5 }

character(n)
varchar(n)
text

char[n+1]
VARCHAR[n+1] *2

PIC X(n)
PIC X(n) VARYING

name char[NAMEDATALEN] PIC X(NAMEDATALEN)

timestamp timestamp *1 PIC X(n)
PIC X(n) VARYING interval interval *1

date date *1

boolean bool *2 BOOL*4

bytea char * PIC X(n)
PIC X(n) VARYING

*1: Accessed via pgtypes libraries *2: Declared in ecpglib.h *3: If no USAGE is specified, host variable is regarded as DISPLAY
*4: Type definition 'PIC X(1)' is added during precompilation

Fujitsu Enterprise Postgres - Embedded SQL in C and COBOL

Example

Contact
Fujitsu Limited
Email: enterprisepostgresql@fujitsu.com
Website: fast.fujitsu.com

2025-03-26 WW EN

 Copyright 2025 FUJITSU LIMITED. Fujitsu, the Fujitsu logo and Fujitsu brand names are trademarks or
registered trademarks of Fujitsu Limited in Japan and other countries. Other company, product and service
names may be trademarks or registered trademarks of their respective owners. All rights reserved. No part
of this document may be reproduced, stored or transmitted in any form without prior written permission of
Fujitsu Limited. Fujitsu Limited endeavours to ensure the information in this document is correct and fairly
stated, but does not accept liability for any errors or omissions.

Database

COBOL

C SQL

item_id item_name
----------+--------------------------
 2741 Spark plug platinum
 3642 Transmission fluid 1L
 5732 Piston V8 sealed
 7653 Carburetor recondit'd
 8159 Crankshaft sensor

main() {

 // Declare host variables
 EXEC SQL BEGIN DECLARE SECTION;
 int intItemId;
 char strItemName[30];
 EXEC SQL END DECLARE SECTION;

 // Prepare SQL statement and declare cursor
 EXEC SQL PREPARE prepStmt FROM "SELECT item_id, item_name FROM inv WHERE qty < ?";
 EXEC SQL DECLARE curInv CURSOR FOR prepStmt;

 // Set exception handling and open cursor
 EXEC SQL WHENEVER NOT FOUND DO BREAK;
 EXEC SQL OPEN curInv USING 100;

 // For each row: retrieve and display
 while (1)
 {
 EXEC SQL FETCH NEXT FROM curInv INTO : intItemId, : strItemName;
 printf(" %d %s ", intItemId, strItemName);
 }

 // Close cursor and deallocate prepared statement
 EXEC SQL CLOSE curInv;
 EXEC SQL DEALLOCATE PREPARE prepStmt;
}

* Declare host variables
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 WS-ITEM-ID PIC S9(4).
 01 WS-ITEM-NAME PIC X(30) VARYING.
EXEC SQL END DECLARE SECTION END-EXEC.

* Prepare SQL statement and declare cursor
EXEC SQL PREPARE prepStmt FROM "SELECT item_id, item_name FROM inv WHERE qty < ?" END-EXEC.
EXEC SQL DECLARE curInv CURSOR FOR prepStmt END-EXEC.

* Set exception handling and open cursor
EXEC SQL WHENEVER NOT FOUND GOTO INV-FETCH-END END-EXEC.
EXEC SQL OPEN curInv USING 100 END-EXEC.

*For each row: retrieve and display
PERFORM WITH
 EXEC SQL FETCH NEXT FROM curInv INTO :WS-ITEM-ID, :WS-ITEM-NAME END-EXEC.
 DISPLAY WS-ITEM-ID WS-ITEM-NAME.
END-PERFORM.

* Close cursor and deallocate prepared statement
INV-FETCH-END.
EXEC SQL CLOSE curInv END-EXEC.
EXEC SQL DEALLOCATE PREPARE prepStmt END EXEC.

SELECT item_id, item_name
FROM inv
WHERE qty < 100;

	About FUJITSU Enterprise PostgresFujitsu Enterprise Postgres
	Why retain legacy systems?
	C and COBOL still have a place in your organisationorganization
	Example

