
Best practices for Fujitsu Enterprise Postgres High Availability on Linux using Mirroring Controller and Arbitration Server

Page 1 of 18 fast.fujitsu.com

Best practices for
Fujitsu Enterprise
Postgres High
Availability on Linux
using Mirroring
Controller and
Arbitration Server

Best practices for Fujitsu Enterprise Postgres High Availability on Linux using Mirroring Controller and Arbitration Server

Page 2 of 18 fast.fujitsu.com

Contents at a glance
1 Introduction .. 4

2 Fujitsu Enterprise Postgres Mirroring Controller 4

3 Reference architecture .. 5

4 Best practice - Deployment and installation 7

5 Network requirements ... 8

6 Mirroring Controller configuration parameters............................. 10

7 Sample script - Fencing ... 12

8 Other recommendations ... 14

9 Failover and Recovery strategy .. 15

10 Logging .. 16

11 Conclusion .. 17

Best practices for Fujitsu Enterprise Postgres High Availability on Linux using Mirroring Controller and Arbitration Server

Page 3 of 18 fast.fujitsu.com

Table of contents
1 Introduction ... 4

2 Fujitsu Enterprise Postgres Mirroring Controller .. 4
2.1. Overview ... 4
2.2. TCP ping Monitor .. 4
2.3. Process check ... 4

3 Reference architecture ... 5
3.1. Architecture components .. 6

3.1.1. Primary .. 6
3.1.2. Standby .. 6
3.1.3. Arbitration Server ... 6
3.1.4. Mirroring Controller agents .. 6

4 Best practice - Deployment and installation .. 7
4.1. Package installation ... 7
4.2. File system layout.. 7
4.3. User and privileges ... 7

5 Network requirements .. 8
5.1. Network types .. 8

5.1.1. Two network interfaces are recommended .. 9
5.1.2. Recommendation for cloud deployment ... 9

5.2. Fujitsu Enterprise Postgres and Mirroring Controller ports... 9

6 Mirroring Controller configuration parameters .. 10

7 Sample script - Fencing .. 12
7.1. Sample script for IPMI tool .. 12
7.2. Sample shell script for Amazon Web Services .. 12
7.3. Sample shell script for Microsoft Azure.. 13

8 Other recommendations .. 14
8.1. synchronous_standby_names ... 14
8.2. Low latency network .. 14

9 Failover and Recovery strategy .. 15
9.1. Failover sequence ... 15
9.2. Rebuild strategy ... 15

9.2.1. Standby failure .. 15
9.2.2. Primary failure .. 16
9.2.3. Switchover (planned maintenance) .. 16

10 Logging .. 16

11 Conclusion ... 17

Best practices for Fujitsu Enterprise Postgres High Availability on Linux using Mirroring Controller and Arbitration Server

Page 4 of 18 fast.fujitsu.com

1. Introduction

Fujitsu Enterprise Postgres (FEP) extends open-source PostgreSQL with advanced enterprise features,
including integrated High Availability (HA) through the Mirroring Controller and Arbitration Server.
This solution ensures continuous database service by automatically detecting failures, promoting
standby servers, and maintaining data consistency through synchronous streaming replication.

This document outlines deployment and operational best practices for implementing HA in Linux
environments using Fujitsu Enterprise Postgres.

2. Fujitsu Enterprise Postgres Mirroring Controller

2.1. Overview

The Mirroring Controller manages the replication cluster, performing:

 Continuous health checks on primary and standby database nodes.

 Automatic Failover during primary failure and Switchover with minimal downtime.

 Coordination with the Arbitration Server to prevent split-brain.

Mirroring Controller runs on both primary and standby nodes and uses TCP protocol for communication
and heartbeats to verify peer status. Binary streaming replication is the backbone of the Fujitsu
Enterprise Postgres high availability solution.

2.2. TCP ping monitor

Mirroring Controller periodically issues TCP ping requests to verify node reachability:

 The heartbeat monitoring of the database server uses the OS ping command

 Monitors the peer node and the arbitration server.

 Uses parameters such as heartbeat_interval and heartbeat_timeout.

2.3. Process check

The Mirroring Controller verifies that Fujitsu Enterprise Postgres processes (primary and standby) are
running correctly:

 Process failure: Mirroring Controller periodically accesses the database processes and checks the
status. A process error is detected by monitoring whether an access timeout occurs.

 Disk failure: Mirroring Controller periodically creates files on the data storage destination disks
(PGDATA, WAL destination & tablespace location). A disk error is detected when an I/O error occurs.

 Replication issue: Mirroring Controller detects streaming replication issues (log transfer network and
WAL send/receive processes) by periodically accessing the PostgreSQL system views.

 Mirroring Controller process failure: The Mirroring Controller monitoring process detects Mirroring
Controller process failures and no responses by periodically querying the Mirroring Controller
process. If an issue is detected, Mirroring Controller is automatically restarted by the Mirroring
Controller monitoring process.

Best practices for Fujitsu Enterprise Postgres High Availability on Linux using Mirroring Controller and Arbitration Server

Page 5 of 18 fast.fujitsu.com

3. Reference architecture

The Fujitsu Enterprise Postgres high availability architecture is built on primary and standby database
instances plus a third server acting as the arbitration node. The primary and standby both run Fujitsu
Enterprise Postgres in “database multiplexing mode” (i.e., streaming replication under Fujitsu Enterprise
Postgres’ control) such that transaction logs from the primary are continuously shipped to and applied at
the standby. Each database node runs the Mirroring Controller process and a monitoring sub-process
which periodically performs OS/server heartbeats, disk I/O checks, and replication-lag checks across the
servers. The arbitration server resides on a separate server and serves as an objective third-party
observer: when Mirroring Controller on one of the database nodes detects abnormality (for example
network interface glitch or unresponsive nodes), the database node sends a query to the arbitration
server which then assesses the health of the peer database node and decide to fence (isolate) the failing
node or trigger a switchover to the standby.

From a systems-layout perspective, the architecture requires at least four distinct networks
(job/business-application network, admin network for Mirroring Controller heartbeats, log-transfer
network for the WAL/streaming replication, and arbitration network between the database nodes and
the arbitration server) in order to ensure proper segregation of traffic and prevent split-brain conditions.
In operation, the standby server can serve read-only/query workloads while the primary handles writes,
and if a failure or fault is detected (for example a disk I/O fault, streaming replication lag or OS hang) the
Mirroring Controller plus arbitration server flow enables quick failover or disconnection of the affected
node. This architecture enables leveraging Fujitsu Enterprise Postgres a well-defined HA blueprint with
clear roles for the database servers, Mirroring Controller, and arbitration services.

Best practices for Fujitsu Enterprise Postgres High Availability on Linux using Mirroring Controller and Arbitration Server

Page 6 of 18 fast.fujitsu.com

3.1. Architecture components

3.1.1. Primary

 Active Fujitsu Enterprise Postgres instance handling read-write operations.

 Streams WAL changes to the standby node.

 Continuously monitored by both Mirroring Controller agent and Arbitration Server.

3.1.2. Standby

 Receives WAL records through synchronous replication.

 Runs Mirroring Controller in standby mode, ready for promotion.

 Continuously monitored by both Mirroring Controller agent and Arbitration Server.

3.1.3. Arbitration Server

 Separate third host used for quorum decisions in two-node clusters.

 Prevents split-brain during network isolation by allowing only one node to be promoted as primary.

3.1.4. Mirroring Controller agents

 Runs on both primary and standby database nodes.

 Exchanges heartbeats, status messages, and control commands.

 Uses Arbitration Server to adjudicate primary when abnormality is detected.

Best practices for Fujitsu Enterprise Postgres High Availability on Linux using Mirroring Controller and Arbitration Server

Page 7 of 18 fast.fujitsu.com

4. Best practices – Deployment and installation

4.1. Package installation

 Install Fujitsu Enterprise Postgres packages only from official Fujitsu repositories or certified media.

 Ensure all nodes (primary, standby, arbitration) run the same OS version.

 Install all required OS Packages.

 Ensure all nodes (primary, standby, arbitration) run the same Fujitsu Enterprise Postgres version and
patch level.

 Use install.sh (or silent.sh) file for consistent deployment.

4.2. File system layout

Path Description Best Practice

/opt/fsepv16server64/bin Fujitsu Enterprise Postgres Server binaries Mount on local SSD.

/database/inst1 Database cluster
Use dedicated volume
(preferably EXT4).

/opt/fsepv16assistant/bin Fujitsu Enterprise Postgres Server
Assistant binaries Mount on local SSD.

/mcdir/inst1 Mirroring Controller configuration files Mount on local SSD.

/mcarb_dir/arbiter1 Arbiter configuration files Mount on local SSD.

4.3. User and privileges

 Fujitsu Enterprise Postgres server and Server Assistant installation requires root or sudo access.

 Run Fujitsu Enterprise Postgres database instance under a dedicated user account (fepuser).

 Mirroring Controller and arbitration server configuration files should be owned by same OS user
account (fepuser), as database.

 Root or sudo privileges must not be used for daily operations.

Best practices for Fujitsu Enterprise Postgres High Availability on Linux using Mirroring Controller and Arbitration Server

Page 8 of 18 fast.fujitsu.com

5. Network requirements

The Mirroring Controller (MC) requires a dedicated, reliable network between the primary and standby
servers to ensure synchronous data replication and monitoring. The networking design is a critical
component to ensure correct fail-over behavior, split-brain prevention, and optimal performance. The
Arbitration network must be designed so that it does not share the same network fabric as the admin or
log-transfer networks – this prevents faults in replication or monitoring traffic of Mirroring Controller
affecting the failover behavior.

In terms of security and isolation, the admin network and log transfer network should not be reachable
from external networks (i.e., they must be isolated from client or public access). Similarly, the line
between the database nodes and the arbitration server must also be secured and normally not
accessible from outside the cluster environment.

5.1. Network types

In Mirroring Controller, there are various types of networks used:

Network Type Description

Job network Network between the application that accesses the database, and the database
server.

Arbitration network Network used by the arbitration server to check the status of the primary server
and standby server, and communicate with Mirroring Controller of the database
servers.

Admin network Network used by the primary server and the standby server to monitor each
other using Mirroring Controller, and to control Mirroring Controller of other
servers.

Log transfer network Network used to transfer the WAL transaction logs of the database, which is part
of database multiplexing.

Database server 1
Primary server

Database

Fujitsu
Enterprise
Postgres

Database server 2
Standby server

Database

Fujitsu
Enterprise
Postgres

Application server

Job
application

Arbitration server

Job network

Mirroring
Controller

Arbitration network

Log transfer network

Transaction
log

Transaction
log

Admin network

Mirroring
Controller

Mirroring
Controller

Best practices for Fujitsu Enterprise Postgres High Availability on Linux using Mirroring Controller and Arbitration Server

Page 9 of 18 fast.fujitsu.com

5.1.1. Two network interfaces are recommended

 For automatic failover due to network abnormalities on the admin network, it is recommended to
have two network interfaces, as below,

 Private network – for WAL streaming, admin and application connections.

 Arbitration network – dedicated network interface not affected by line failures or load.

 Low latency network is highly recommended.

5.1.2. Recommendation for cloud deployment

When deploying the Fujitsu Enterprise Postgres HA solution in the cloud environment, consider:

 Install each database server and arbitration server in different Availability Zones (AZ).

 Prepare each network (business network, arbitration network, admin network, and log transfer
network) using the subnet function of the cloud service. In this document, assume each network as
separate subnet created by the cloud service.

 If a virtual network failure occurs, you cannot use the database multiplexing mode feature. Wait for
the cloud service to recover, and after recovery, check the redundancy of the database.

 Ensure reliable fencing script is in place, to prevent split-brain. (Refer section:8)

 If you cannot prepare four networks in environments such as public cloud, or cannot add network
interface cards to the server, the following configurations that share some networks are possible:

 Share all networks: Share job network, admin network and arbitration network.

When sharing networks, there are no impacts other than increased load due to network sharing during
regular operations. However, there are impacts such as restrictions on features for multiplexed modes
and the need for special designs for operations in response to network abnormality.

5.2. Fujitsu Enterprise Postgres and Mirroring Controller ports

Mirroring Controller uses two separate ports for Arbitration and admin networks.

Purpose Default port

Fujitsu Enterprise Postgres instance port 27500

Mirroring Controller admin network port 27540

Arbitration network port 27541

It is best practice to NOT use the default ports and recommend using different port numbers for the
above functionalities.

Also ensure the assigned ports are open and reserved for Fujitsu Enterprise Postgres and make sure
these ports are allowed by the firewalls.

Best practices for Fujitsu Enterprise Postgres High Availability on Linux using Mirroring Controller and Arbitration Server

Page 10 of 18 fast.fujitsu.com

6. Mirroring Controller configuration parameters

Configuration parameters for “server<identifier>.conf” on database nodes. For example, server1.conf:

Parameter Description Remarks

db_instance Specify PGDATA directory

target_db Specify ‘template1’ or ‘postgres’
Use ‘template1’, in case of enabling
session audit, as auditing will capture
Mirroring Controller connection

heartbeat_error_action Operation when heartbeat abnormality is
detected.

arbitration: Perform automatic
degradation using the arbitration
server. It also accepts other values,
please refer Fujitsu Enterprise
Postgres manuals.

heartbeat_interval Interval time for abnormality monitoring
(in milliseconds)

800ms

fencing_command Fence the database server, where an
error is determined to have occurred.

Refer the sample fencing script
available and test it thoroughly.
(Refer section:8)

pre_detach_command

Specify the full path of the command to
be called by Mirroring Controller before
the standby server is disconnected from
the cluster system.

This parameter can be leveraged for
email notification, before the standby
is detached.

post_attach_command

Specify the full path of the command to
be called by Mirroring Controller after the
standby server is attached to the cluster
system.

This parameter can be leveraged for
email notification, after the standby is
attached.

post_switch_command

Specify the full path of the command to
be called by Mirroring Controller after a
new primary server is promoted during a
failover of the primary server.

This parameter can be leveraged for
email notification, after the failover
or switchover on the instance.

Configuration parameters for “arbitration.conf” on database nodes. For example, arbitration.conf:

Parameter Description Remarks

port
Port number of the Mirroring Controller
arbitration process

my_address
The IP address or host name of the arbitration
server to be specified in network.conf on the
database server.

fencing_command
Specify the full path of the fencing command
that fences a database server where an error is
determined to have occurred.

Fencing script should be well tested
in the environment. Sample scripts
are available for reference.

Best practices for Fujitsu Enterprise Postgres High Availability on Linux using Mirroring Controller and Arbitration Server

Page 11 of 18 fast.fujitsu.com

Parameter Description Remarks

syslog_ident Specify an identifier for arbitration process
message in the system log.

Best practices for Fujitsu Enterprise Postgres High Availability on Linux using Mirroring Controller and Arbitration Server

Page 12 of 18 fast.fujitsu.com

7. Sample script – Fencing

The fencing command can be implemented by simply stopping the operating system or server. For
example, if stopping the power for the database server, it is possible to use a utility to control the
hardware control board in environments equipped with boards compatible with IPMI hardware standard.

7.1. Sample script for IPMI tool

Below is a sample script of a fencing command that powers off the database server using the IPMI tool.

Sample shell script

/installDir/fsepv17assistant/share/mcarb_execute_fencing.sh.sample

Modify the parameter values that are highlighted in blue.

Need to be modified
srv1ident="server1" # Server identify of Mirroring Controller
srv2ident="server2" # Server identify of Mirroring Controller
ipmi_admin="fsepuser" # Remote server username for IPMItool
ipmi_password="fsepuser" # Remote server password for IPMItool
check_interval=500000 # Interval for checking the power status power-off
srv1addr="192.0.4.100" # Remote server address of srv1ident for IPMItool
srv2addr="192.0.4.110" # Remote server address of srv2ident for IPMItool

logdir="/var/tmp/work"
logfile="${logdir}/fencing.$(date '+%Y%m%d%H%M%S').log"

7.2. Sample shell script for Amazon Web Services

Below is a sample script of a fencing command to stop the power of the database server using the CLI
command of the AWS cloud service.

/installDir/fsepv17assistant/share/mcarb_execute_fencing.sh.aws.sample

Modify the parameter values that are highlighted in blue.

Need to be modified

srv1ident="server1" # Server identify of Mirroring Controller
srv1id="server1-id" # Remote server id of srv1ident for AWS CLI

srv2ident="server2" # Server identify of Mirroring Controller
srv2id="server2-id" # Remote server id of srv1ident for AWS CLI

check_interval=0.5 # Interval for checking the power status power-off

logdir="/var/tmp/work"
logfile="${logdir}/fencing.$(date '+%Y%m%d%H%M%S').log"

Best practices for Fujitsu Enterprise Postgres High Availability on Linux using Mirroring Controller and Arbitration Server

Page 13 of 18 fast.fujitsu.com

7.3. Sample shell script for Microsoft Azure

Below is a sample script of a fencing command to stop the power of the database server using the CLI
command of the Azure cloud service.

/installDir/fsepv17assistant/share/mcarb_execute_fencing.sh.az.sample

Modify the parameter values that are highlighted in blue.

Need to be modified

srv1ident="server1" # Server identify of Mirroring Controller
srv1name="server1-name" # Remote server name of srv1ident for Azure CLI

srv2ident="server2" # Server identify of Mirroring Controller
srv2name="server2-name" # Remote server name of srv1ident for Azure CLI

resource_group="resource-group" # resource-group for Azure CLI

check_interval=0.5 # Interval for checking the power status power-off

logdir="/var/tmp/work"
logfile="${logdir}/fencing.$(date '+%Y%m%d%H%M%S').log"

Azure login
az login –identity

Best practices for Fujitsu Enterprise Postgres High Availability on Linux using Mirroring Controller and Arbitration Server

Page 14 of 18 fast.fujitsu.com

8. Other recommendations

8.1. synchronous_standby_ names

Synchronous mode of streaming replication is mandatory requirement to implement high availability
using Mirroring Controller and Server Assistant.

Set synchronous replication on the database servers, as below:

synchronous_commit = on
synchronous_standby_names = 'standby1'

Check replication status via:

SELECT application_name, sync_state FROM pg_stat_replication;

Note:

 Never set the parameter 'synchronous_standby_names' in the postgresql.auto.conf file. As this alters
the behavior of failover or switchover.

 Remove multiple entries of the parameter 'synchronous_standby_names' and retain only one entry.

8.2. Low latency network

It is important to have low network latency for smooth operations of Mirroring Controller.

Tune the heartbeat_interval and heartbeat_timeout, based on the round-trip time of ping command
response.

Use tools like ping or mtr for accurate latency measurements.

Best practices for Fujitsu Enterprise Postgres High Availability on Linux using Mirroring Controller and Arbitration Server

Page 15 of 18 fast.fujitsu.com

9. Failover and Recovery strategy

9.1. Failover sequence

1. Primary DB server crashed

2. Mirroring Controller on standby detects loss of primary heartbeats and report to arbitration server

3. Arbitration Server verifies the primary status, and it is unreachable.

4. Primary server is fenced, when Mirroring Controller on database nodes are also unreachable.

5. Mirroring Controller promotes standby as new primary instance.

6. Fetch the internal state of database servers.

7. Connection Manager redirects the client requests automatically to newly promoted server.

9.2. Rebuild strategy

9.2.1. Standby failure

1. Stop the Mirroring Controller on standby server.

2. Using pgbackrest, restore the standby database from backup.

3. If pgbackrest is not configured, then remove the files under $PGDATA and use pg_basebackup and
copy files from primary server.

pg_basebackup -h primary -D /database/inst1 -X stream -R -P

4. Update the application_name field for primary_conninfo parameter in the
$PGDATA/postgresql.auto.conf file.

5. Uncomment ‘synchronous_standby_names’ in the postgresql.conf on the primary server and reload
the configuration file.

6. Start the Mirroring Controller on standby.

7. Check the Mirroring Controller status on the primary and standby server.

Best practices for Fujitsu Enterprise Postgres High Availability on Linux using Mirroring Controller and Arbitration Server

Page 16 of 18 fast.fujitsu.com

9.2.2. Primary failure

When primary server fails for whatever reason, the Mirroring Controller automatically fails over to the
standby server.

1. Stop the Mirroring Controller on the old primary server.

2. Use pg_rewind, if possible (Either wal_log_hints or data_checksums must be enabled.)

3. If pg_rewind is not possible, use pgbackrest to restore from the backup.

4. If pgbackrest is not configured, then remove the files under $PGDATA and use pg_basebackup and
copy files from primary server.

pg_basebackup -h primary -D /database/inst1 -X stream -R -P

5. Update the application_name field for primary_conninfo parameter in the
$PGDATA/postgresql.auto.conf file.

6. Uncomment ‘synchronous_standby_names’ in the postgresql.conf on the primary server and reload
the configuration file.

7. Start the Mirroring Controller on the new standby (old primary).

8. Check the Mirroring Controller status on the primary and standby server.

9.2.3. Switchover _planned maintenance-

Use Server Assistant or Mirroring Controller command:

mc_ctl status -M /mcdir/inst1
mc_ctl switch -M /mcdir/inst1
mc_ctl status -M /mcdir/inst1

Performs controlled failover to the standby server and follow the primary failure rebuilding steps.

10. Logging

Component Location Notes

PostgreSQL $PGDATA/log/postgresql.log Database and instance logs

Mirroring Controller log /var/log/messages
Specify the program name in the syslog_ident
parameter of the serverIdentifier.conf file of the
database server.

Arbitration Server log /var/log/messages
Specify the program name in the syslog_ident
parameter of the arbitration.conf file of the
arbitration server.

Best practices for Fujitsu Enterprise Postgres High Availability on Linux using Mirroring Controller and Arbitration Server

Page 17 of 18 fast.fujitsu.com

11. Conclusion

Fujitsu Enterprise Postgres combines the robustness of PostgreSQL with enterprise-class HA through the
Mirroring Controller and Arbitration Server.

Proper installation, tuned configuration, redundant networking, and disciplined operational practices
ensure zero data loss, automatic failover, and resilient service continuity.

By following these best practices, on Linux deployments can achieve:

 Predictable failover and recovery behavior.

 Data integrity even in network isolation scenarios.

 Simplified administration and monitoring under real-world workloads.

Best practices for Fujitsu Enterprise Postgres High Availability on Linux using Mirroring Controller and Arbitration Server

Page 18 of 18 fast.fujitsu.com

Fujitsu Enterprise Postgres is the enhanced version of

PostgreSQL, for enterprises seeking a more robust, secure,

and fully supported edition for business-critical applications

Contact

Fujitsu Limited

Email: enterprisepostgresql@fujitsu.com

Website: fast.fujitsu.com

 Copyright 2025 Fujitsu Limited. Fujitsu, the Fujitsu logo and Fujitsu brand names are trademarks or registered trademarks of
Fujitsu Limited in Japan and other countries. Other company, product and service names may be trademarks or registered
trademarks of their respective owners. All rights reserved. No part of this document may be reproduced, stored or transmitted
in any form without prior written permission of Fujitsu Australia Software Technology. Fujitsu Australia Software Technology
endeavors to ensure the information in this document is correct and fairly stated, but does not accept liability for any errors or
omissions

https://fast.fujitsu.com/enhanced-security-for-enterprises
https://fast.fujitsu.com/enhanced-security-for-enterprises
https://fast.fujitsu.com/

	1. Introduction
	2. Fujitsu Enterprise Postgres Mirroring Controller
	2.1. Overview
	2.2. TCP ping monitor
	2.3. Process check

	3. Reference architecture
	3.1. Architecture components
	3.1.1. Primary
	3.1.2. Standby
	3.1.3. Arbitration Server
	3.1.4. Mirroring Controller agents

	4. Best practices – Deployment and installation
	4.1. Package installation
	4.2. File system layout
	4.3. User and privileges

	5. Network requirements
	5.1. Network types
	5.1.1. Two network interfaces are recommended
	5.1.2. Recommendation for cloud deployment

	5.2. Fujitsu Enterprise Postgres and Mirroring Controller ports

	6. Mirroring Controller configuration parameters
	7. Sample script – Fencing
	7.1. Sample script for IPMI tool
	7.2. Sample shell script for Amazon Web Services
	7.3. Sample shell script for Microsoft Azure

	8. Other recommendations
	8.1. synchronous_standby_names
	8.2. Low latency network

	9. Failover and Recovery strategy
	9.1. Failover sequence
	9.2. Rebuild strategy
	9.2.1. Standby failure
	9.2.2. Primary failure
	9.2.3. Switchover (planned maintenance)

	10. Logging
	11. Conclusion

