Best practices for Fujitsu Enterprise Postgres Connection Manager
L

L
Page 1 of 12 fast.fujitsu.com

Best practices for Fujitsu Enterprise Postgres Connection Manager

I
Contents at a glance

T Introduction ... 4
2 Connection Manager features..........ccccoeuevucvernncniucnnncnnen. 5
3 Reference architecture.............uceevcnivninninecnecincnnnennn 6
4 Implementation............iiiiinniiiniiiniiiiiincneceenne 7
5 Connection Manager configuration parameters.......... 10

6 Best practices......c.covvivririeinncriecnnncnisecnncnssecnnencnecnsenen 11

8 CONCIUSIONiveeeireeiirieeietrenecerenescsssssssssssssssssssssssssssssssseses 11

Page 2 of 12 fast.fujitsu.com

Best practices for Fujitsu Enterprise Postgres Connection Manager

Table of contents

I 0 e T LU o3 T o 4
2 Connection Manager features...........ininieinuinnicnninnicncnecnecsecseessecseesnes 5
2.1. Heartbeat MONITOMNG ..ottt s ses 5
2.2. Transparent cONNECTION SUPPOIT ..ottt 5
3 Reference architecture..........iiiriiniiniiiniiintnc e 6
4 Implementation ... 7
4.1. ON database SEIVET ...t 7
4.2. ON aPPLCALION SEIVEN ...ttt naeae 8
4.3. SUPPOITEd CLIENT ANVELS ...ttt 9
4.4, USer and PriVILEGES ...ttt saens 9
5 Connection Manager configuration parameters...........ccoceeervuinruciecnerncnnncnnncnne 10
6 BeSt PractiCes.....u ittt s aa e snae 1
7 e o T [3T 1"
8 CONCIUSION ...ttt ss s sr e e sane s 1

1
Page 3 of 12 fast.fujitsu.com

Best practices for Fujitsu Enterprise Postgres Connection Manager
L

1. Introduction

The Connection Manager (CM) component of Fujitsu Enterprise Postgres is designed to enhance high-
availability and seamless connectivity for client applications in clustered database environments.
Connection Manager provides mechanisms that allow applications to connect to whichever database
instance is appropriate (for example, after a fail-over) without needing explicit logic in the application
layer.

Fujitsu Enterprise Postgres Connection Manager provides heartbeat monitoring and transparent
connection support features. The Connection Manager monitors client/server and Fujitsu Enterprise
Postgres instances running on the database server. If there is a physical server failure and the inter-server
network link goes down, the Connection Manager notifies the client and the database instance. The
Connection Manager transparent connection feature allows the application to connect to an instance
from a set of instances that is configured for streaming replication. The connection to an underlying
database instance is transparent to the application.

Benefits of using Connection Manager:

® Avutomatic reaping of connection happens when an abnormality is observed on the application
server.

® The connection to the database instance is transparent to the application, and the application is
notified at the time of the database instance failure.

® The application connection switches to the available database instance when database failover
happens.

® After a connection is established, the application requests directly go to the database instance, so
there is no performance degradation.

L
Page 4 of 12 fast.fujitsu.com

Best practices for Fujitsu Enterprise Postgres Connection Manager

2. Connection Manager features

This section describes the Connection Manager features.

2.1. Heartbeat monitoring

The heartbeat monitoring feature of Connection Manager allows the system to detect unreachable or
failed database instances more proactively than typical operating-system TCP keep-alive. While the TCP
keepalives can fail to detect certain failure modes (e.g., where the TCP layer retransmits indefinitely or
where the remote host is unreachable but still at TCP level “alive”), the Connection Manager mechanism
uses an application-layer heartbeat between client-side conmgr and server-side "watchdog” process.
On the client side, a single conmgr process is started (via cm_ctl) for a given set of instances. On the
server side, a PostgreSQL extension “watchdog" is installed; this spawns two background workers at
instance startup: one for sending/receiving heartbeat packets to/from conmgr, and one (the terminator)
for forcibly terminating SQL connections from clients whose heartbeat monitoring fails (by IP address)
even if those connections themselves don't explicitly go down.

2.2. Transparent connection support

Transparent Connection Support allows an application to connect to the database without needing to
know which host is currently the primary or standby (or which instance is appropriate). With Connection
Manager, the client driver connects initially to the conmgr listening endpoint; conmgr then routes the
connection to the correct database instance (based on heartbeat/monitoring state) so the application
sees essentially a single endpoint.

Internally this works in two phases: the client driver connects to the local conmgr (or Connection
Manager endpoint) which receives the request and then forwards (or instructs the driver to connect) to
the target database instance. Once the actual SQL session is established, the driver and database
communicate directly (so there is minimal extra latency from Connection Manager beyond the initial
resolution). Transparent connection support thus enables faster failover and less application-impact,
because the application doesn’t need to implement custom logic such as “try host A, then host B” or
“query which host is primary”. Connection Manager handles that logic and hides the complexity.

L
Page 5 of 12 fast.fujitsu.com

Best practices for Fujitsu Enterprise Postgres Connection Manager

3. Reference architecture

Connection Manager is configured on the client/server and the database server. On the client side, a
monitoring process is started that is called the ‘conmgr’ process to monitor the set of database
instances.

On the server side, the PostgreSQL extension Watchdog is installed. Due to the Watchdog extension,
Postmaster starts two processes as background workers at database instance startup.

One process that is called Watchdog is for heartbeat monitoring, and the second process that is called
Terminator is to forcibly terminate client SQL connections when the Watchdog process detects a failure
on heartbeat monitoring.

The diagram shows that primary and standby instance configured with streaming replication, with
watchdog process sharing heartbeat and returning status of the instance with conmgr process running
on the application side.

When Connection Manager is configured on Fujitsu Enterprise Postgres instances configured with
Mirroring Controller to provide automatic failover, the Connection Manager at the front-end provides
transparent connectivity to the instance, based on attributes in the client connection string.

When a standby database is promoted as primary or an automatic failover happens, the watchdog
process updates the state of the instance with conmgr process, so that the connections to that server
can be initiated as soon as the application requests it.

If the instance set in the conmgr.conf includes multiple standby servers configured for streaming
replication, read requests are automatically distributed among those standby servers to achieve load-
balancing.

Page 6 of 12 fast.fujitsu.com

Best practices for Fujitsu Enterprise Postgres Connection Manager

4. Implementation

4.1. On database server

On the database server side, implementation requires installing the server-side extension ‘Watchdog' for
Connection Manager, enabling it in the postgresql.conf file. After the extension is created, the watchdog
and terminator background workers are started. On the database server, the terminator process may
forcibly disconnect client connections based on IP address if the heartbeat fails. The server must also
accept heartbeat traffic from conmgr processes (on defined ports).

To set up Connection Manager on the database server,

1. Add below parameters to postgresql.conf

Add to $PGDATA/postgresql.conf

shared_preload_libraries = “"watchdog”
watchdog.port = 27545

2. Restart the Fujitsu Enterprise Postgres cluster

pg_ctl -D /database/instl restart

3. Create database extension

CREATE EXTENSION watchdog;

4. Repeat the above steps on the standby servers as well.

1
Page 7 of 12 fast.fujitsu.com

Best practices for Fujitsu Enterprise Postgres Connection Manager

4.2. On application server

On the application server, implementation involves installing the Fujitsu Enterprise Postgres Client
software and configuring the conmgr process for the set of database instances. The conmgr.conf file
defines the instance set (primary and one or more standby servers in streaming replication), host/port of
each database and monitoring parameters (heartbeat interval, timeout, etc).

The Connection Manager must be installed on the server where application is hosted and if applications
running on multiple servers share the same database cluster, then install and configure Connection
Manager on all the application servers.

Steps to configure Connection Manager on Application server:

1. On application server, as appuser, create a conmgr.conf file for connection manager.

Create a directory

$ mkdir /home/appuser/conn_mgr

Create conmgr.conf file

$ vi /home/appuser/conn_mgr/conmgr .conf
port = 27546

backend_hostO = "10.0.0.10"

backend_hostl = "10.0.0.20"
backend_portO 27500
backend_portl 27500
watchdog _port0 = 27545
watchdog _portl = 27545
log_destination = "syslog”

2. Start the Connection Manager process.

$ cm_ctl -D /home/appuser/conn_mgr start

cm_ctl: conmgr process is ready (25077)

cm_ctl: waiting conmgr process to connect to watchdog (25070)
cm_ctl: started conmgr process successfully (25078)

3. Check the status of the Connection Manager

$ cm_ctl -D /home/appuser/conn_mgr status -i instance
conmgr_status:

status pid

ready 30579

instance_information:

addr port database_attr
10.0.0.10 27500 primary
10.0.0-20 27500 standby

The application connection string is pointed at the conmgr endpoint (e.g., host=localhost
port=<CM_PORT>), and you typically set driver attributes like target_session_attrs (in libpg/|DBC) so the
driver works with Connection Manager seamlessly.

On Linux, ensure that conmgr is started as a daemon or systemd service, and that it remains running for
the lifecycle of the application processes. Also, ensure that the client side has network visibility and
route connectivity to all target database hosts defined in conmgr.conf. It is strongly recommended not
to run conmgr process from the database host.

Page 8 of 12 fast.fujitsu.com

Best practices for Fujitsu Enterprise Postgres Connection Manager

4.3. Supported client drivers

Connection Manager supports following client drivers,

libpqg (C language library) — supported from Fujitsu Enterprise Postgres 12 onwards

ECPG (embedded SQL in C) - supported from Fujitsu Enterprise Postgres 12 onwards
ECOBPG (embedded SQL in COBOL) - supported from Fujitsu Enterprise Postgres 14 onwards
JDBC driver - supported from Fujitsu Enterprise Postgres 14 onwards

ODBC driver connection - supported from Fujitsu Enterprise Postgres 14 onwards

Python language package (psycopg) — supported from Fujitsu Enterprise Postgres 17 SP1 onwards
Note: Golang is not supported.

4.4. User and privileges

® Fujitsu Enterprise Postgres Client installation on application server requires root or sudo access.
® Run Connection Manager's conmgr process from the application user account (appuser).

® Root or sudo privileges must not be used for daily operations.

Page 9 of 12 fast.fujitsu.com

Best practices for Fujitsu Enterprise Postgres Connection Manager

5. Connection Manager configuration parameters

Configuration parameters for “conmgr.conf” on the application servers. For example, conmgr.conf:

Parameter Description Remarks
Specify the port number on which the
port conmgr process listens for connections

from the applications.

backend_host*

Specify the host name or IP address of the
instance.

To distinguish multiple instances,
append a zero-based number
immediately after the parameter
name, such as backend_hostO,
backend_host1,etc.

backend_port*

Specify the port number the postmaster of
the database instance will listen on.

watchdog_port*

Specify the port number on which the
watchdog process listens.

The conmgr process connects to this
port, but the user application does not.
You must set it to the same value as
watchdog.port parameter in
postgresgl.conf.

heartbeat_interval

The interval at which heartbeat packets are
sent to and from this conmgr process. The
unit is seconds.

The default is 10 seconds.

heartbeat_timeout

The timeout value for the heartbeat to and
from this conmgr process. The unit is
seconds.

The default is 20 seconds.

log_destination

Specify the destination to log the messages.

"stderr" and "syslog" can be specified. The
default is to print only to stderr.

syslog_ident

Specify the program name used to identify
the output from the conmgr process. The
default is "conmgr".

Page 10 of 12

fast.fujitsu.com

Best practices for Fujitsu Enterprise Postgres Connection Manager

6.

Best practices

Some of the best practices to follow when installing and configuring Connection Manager.

7.

Configure driver and connection string properly: Use the driver parameter target_session_attrs
for libpq (or targetServerType for]DBC) combined with Connection Manager endpoint so that
client applications don't need custom logic. Let Connection Manager handle redirection to
primary/standby.

Ensure failover readiness: Because transparent connection support allows rapid switch, test the
failover path (simulate primary failure, ensure standby becomes primary, Connection Manager
redirects connections) and confirm that session interruption is within acceptable bounds.

Avoid co-locating conmgr and Database instance: Particularly in replication setups, don't deploy the
conmgr process on the same host as the upstream database instance to avoid unintended
termination of replication connections.

Tune heartbeat parameters: In low-latency, high-reliability networks you can afford lower
heartbeat_interval values (for faster detection), but in higher latency or cloud-network setups
you may want to increase heartbeat_timeout to avoid false detection. Review the default values
and adjust based on your environment. The system view pgx_stat_watchdog can be queried from
database instance, to list the heartbeat values set on the conmgr.conf file.

Monitor Connection Manager health: On both client and server side, monitor the health of conmgr,
watchdog/terminator processes, and look for logs indicating heartbeat failures or forced
terminations. Set alerts for such events.

Logging

These are the log locations that are helpful when troubleshooting.

Component Location Notes
PostgreSQL $PGDATA/log/postgresqgl.log Database and instance logs
Connection Manager log /var/log/messages Specify the ‘log_destination’ parameter to

'syslog’ in the conmgr.conf.

8. Conclusion

The Connection Manager feature in Fujitsu Enterprise Postgres provides a robust mechanism to enhance

connectivity resiliency and availability for client applications in clustered database environments. By
combining heartbeat monitoring and transparent connection support, it enables near-seamless client
failover and reduces the burden on application logic. When implemented on Linux, careful attention to
client-side conmgr configuration, server-side watchdog/terminator deployment, heartbeat parameter

tuning, network isolation, and operational readiness testing are key to maximizing the benefit of
Connection Manager. Coupled with application-level timeout safeguards, Connection Manager serves as
a powerful component in a high-availability architecture.

L
Page 11 of 12 fast.fujitsu.com

Best practices for Fujitsu Enterprise Postgres Connection Manager
L

L
Page 12 of 12 fast.fujitsu.com

https://fast.fujitsu.com/enhanced-security-for-enterprises
https://fast.fujitsu.com/enhanced-security-for-enterprises
https://fast.fujitsu.com/

	1. Introduction
	2. Connection Manager features
	2.1. Heartbeat monitoring
	2.2. Transparent connection support

	3. Reference architecture
	4. Implementation
	4.1. On database server
	4.2. On application server
	4.3. Supported client drivers
	4.4. User and privileges

	5. Connection Manager configuration parameters
	6. Best practices
	7. Logging
	8. Conclusion

