
Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 1 of 48 fast.fujitsu.com

Best practices for

Fujitsu Enterprise

Postgres/PostgreSQL

performance

optimization

Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 2 of 48 fast.fujitsu.com

Contents at a glance
1 Executive summary .. 5

2 Introduction .. 6

3 Fujitsu Enterprise Postgres/PostgreSQL architecture diagram 7

4 Tuning technique ... 10

5 Operating system tuning .. 12

6 Check application SQLs .. 27

7 Tune database parameters .. 37

8 Fujitsu Enterprise Postgres performance enhancement 43

9 Best practices for inserting large amounts of data 46

10 Conclusion ... 47

Best practices for Fujitsu Enterprise Postgres/PostgreSQL performance optimization

Page 3 of 48 fast.fujitsu.com

Table of contents
1 Executive summary .. 5

2 Introduction .. 6
2.1. What this guide covers .. 6

3 Fujitsu Enterprise Postgres#PostgreSQL architecture diagram ... 7
3.1. Memory architecture of Fujitsu Enterprise Postgres .. 7

3.1.1. Shared memory area ... 8
3.1.2. Local memory area .. 8

4 Tuning technique ... 10
4.1. Introduction to Fujitsu Enterprise Postgres/PostgreSQL tuning approach ... 10

4.1.1. Start with the operating system .. 10
4.1.2. Check the application SQLs .. 11
4.1.3. Tune database server configuration .. 11

5 Operating system tuning ... 12
5.1. Kernel parameters ... 12

5.1.1. Shared memory and semaphores: How Fujitsu Enterprise Postgres/PostgreSQL uses them 12
5.1.2. System limits and what happens when you hit them ... 13
5.1.3. How do these parameters matter? .. 14
5.1.4. POSIX vs System V .. 14
5.1.5. Why tune kernel parameters? .. 14
5.1.6. getconf PAGE_SIZE ... 15
5.1.7. vm.dirty_bytes .. 15
5.1.8. vm.dirty_background_bytes ... 15
5.1.9. vm.dirty_ratio... 15
5.1.10. vm.dirty_background_ratio ... 15
5.1.11. vm.swappiness ... 16
5.1.12. vm.zone_reclaim_mode .. 16
5.1.13. vm.overcommit_memory... 16
5.1.14. vm.overcommit_ratio... 16

5.2. Device configuration ... 17
5.2.1. Scheduler .. 17
5.2.2. Read ahead .. 18

5.3. Mount point options in Linux for databases .. 19
5.3.1. noatime.. 19
5.3.2. discard .. 19
5.3.3. nobarrier.. 20

5.4. Redundant Array of Independent Disks (RAID) .. 21
5.4.1. Less Desirable RAID Levels (Bad) - RAID 5, RAID 6 & RAID 0 .. 21
5.4.2. Better RAID Options (Good) - RAID 1 ... 22
5.4.3. Optimal RAID for Databases (Ideal) - RAID 10 (RAID 1+0) ... 22

5.5. File systems .. 23
5.5.1. EXT2 .. 23
5.5.2. EXT3 .. 23
5.5.3. EXT4 .. 24
5.5.4. XFS ... 25

Best practices for Fujitsu Enterprise Postgres/PostgreSQL performance optimization

Page 4 of 48 fast.fujitsu.com

5.5.5. Remote file systems ... 25
5.6. Disk separation .. 25

5.6.1. pg_wal .. 25
5.6.2. pg_stat_tmp... 26
5.6.3. WAL archive ... 26
5.6.4. Temporary files ... 26

6 Check application SQLs ...27
6.1. Why SQL tuning is Important .. 27
6.2. Identifying and minimizing sequential scans .. 27
6.3. Avoiding unused indexes .. 29
6.4. Detecting duplicate indexes .. 30
6.5. Avoid SELECT * ... 30
6.6. Optimize IN vs EXISTS vs JOIN .. 31
6.7. Leverage index-only scans ... 32
6.8. Consider partitioning .. 33
6.9. Limiting application connections .. 34
6.10. pg_stat_statements .. 35
6.11. Use views or materialized views for complex queries .. 35
6.12. Equijoins to improve SQL efficiency .. 35
6.13. Avoid implicit type conversion ... 36
6.14. Use parallel query scans to improve query performance ... 36

7 Tune database parameters ...37
7.1. max_connections ... 37
7.2. shared_buffers .. 37
7.3. work_mem .. 38
7.4. maintenance_work_mem .. 38
7.5. effective_cache_size ... 38
7.6. wal_buffers ... 39
7.7. max_wal_size.. 39
7.8. checkpoint_timeout .. 40
7.9. max_parallel_workers_per_gather .. 40
7.10. random_page_cost ... 40
7.11. huge_pages ... 40
7.12. bgwriter_delay .. 41
7.13. bgwriter_lru_maxpages .. 41
7.14. bgwriter_lru_multiplier .. 41
7.15. bgwriter_flush_after ... 41
7.16. backend_flush_after ... 42
7.17. checkpoint_flush_after .. 42

8 Fujitsu Enterprise Postgres performance enhancement .. 43
8.1. Global Meta Cache (GMC) ... 43
8.2. Parallel scan in Fujitsu Enterprise Postgres .. 44
8.3. High-Speed Data Load in Fujitsu Enterprise Postgres ... 45

9 Best practices for inserting large amounts of data ... 46

10 Conclusion ..47

Best practices for Fujitsu Enterprise Postgres/PostgreSQL performance optimization

Page 5 of 48 fast.fujitsu.com

1. Executive summary

Fujitsu Enterprise Postgres/PostgreSQL is one of the most advanced, feature-rich, and widely adopted
open-source relational database systems in the world. It powers everything from small web applications
to large-scale enterprise data warehouses and mission-critical financial systems. While Fujitsu Enterprise
Postgres/PostgreSQL comes with smart defaults that allow it to run on a broad range of hardware, these
defaults are intentionally conservative. They prioritize compatibility and safety over squeezing every
drop of performance out of modern servers.

This is why performance tuning is essential. It transforms a generic Fujitsu Enterprise
Postgres/PostgreSQL installation into a finely tuned engine that leverages the full power of your
hardware, operating system, and workload characteristics. Proper tuning can mean the difference
between an application that struggles under load and one that scales effortlessly.

This guide provides a comprehensive approach to Fujitsu Enterprise Postgres/PostgreSQL performance
tuning. It goes beyond simply listing configuration parameters. Instead, it takes a holistic approach
starting with the operating system, delving into hardware choices and kernel tuning, guiding you through
optimizing SQL queries and indexing strategies, and finally showing how to fine-tune Fujitsu Enterprise
Postgres/PostgreSQL’s own internal parameters.

Readers will learn:

 How to prepare the operating system for a high-performance database workload by adjusting
memory, I/O, and scheduler settings.

 The impact of file systems, RAID levels, and disk choices on Fujitsu Enterprise Postgres/PostgreSQL
throughput and latency.

 How to analyze application SQLs, spot anti-patterns, and rewrite queries for efficiency.

 How to adjust Fujitsu Enterprise Postgres/PostgreSQL settings like shared_buffers, work_mem, and
checkpoint_completion_target to better fit your specific workload.

The aim of this guide is to equip database administrators, system engineers, developers, and DevOps
teams with clear, actionable insights. Each recommendation is explained with its rationale, so you can
understand not just what to tune, but also why. The end goal is a Fujitsu Enterprise Postgres/PostgreSQL
deployment that is faster, more stable, more predictable, and capable of scaling as your demands grow.

Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 6 of 48 fast.fujitsu.com

2. Introduction

At its core, Fujitsu Enterprise Postgres/PostgreSQL is designed to be a general-purpose, standards-
compliant database. Its out-of-the-box settings allow it to run reliably on a wide range of systems, from
laptops to enterprise servers. However, the same generic approach that ensures broad compatibility also
means it leaves much of your hardware potential unused.

For example:

 By default, Fujitsu Enterprise Postgres/PostgreSQL might allocate only a modest amount of memory
for caching data, leading to frequent disk reads even if you have large amounts of RAM.

 Its planner cost settings are tuned for spinning disks, which could cause suboptimal plans on SSD-
heavy systems.

 Checkpointing and WAL settings are conservative to ensure safety but might not be balanced for
your write-heavy workload, leading to sudden I/O spikes.

All of this means that if you run Fujitsu Enterprise Postgres/PostgreSQL in production, tuning is not
optional. It is a critical responsibility to ensure your database keeps up with user demand and doesn’t
become the bottleneck that slows down your entire application.

2.1. What this guide covers

This guide starts by examining the underlying system and hardware layer, because that’s where the
database’s performance ultimately depends. We’ll look at Linux kernel parameters that affect memory
management and I/O, the right filesystems and mount options, and the best practices for SSDs and RAID
configurations.

Next, we’ll explore SQL optimization, because no matter how well your system is tuned, inefficient
queries can cripple performance. We’ll show you how to identify sequential scans that could be avoided,
detect unused or duplicate indexes that waste resources, and rewrite typical anti-patterns like SELECT
*.

Finally, we’ll dive into Fujitsu Enterprise Postgres/PostgreSQL’s own parameters, explaining how settings
like shared_buffers, work_mem, and checkpoint_timeout directly impact memory, CPU, and disk
usage. Each parameter is discussed in a way that connects it to real-world workload symptoms, so you
can tune based on evidence not guesswork.

Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 7 of 48 fast.fujitsu.com

3. Fujitsu Enterprise Postgres/PostgreSQL architecture diagram

Note: User Profile Status Writer is specific to Fujitsu Enterprise Postgres background process.

Before we explore ways to optimize ujitsu Enterprise Postgres (built on PostgreSQL), it’s important to
revisit its underlying memory architecture. Understanding how memory is structured and utilized forms
the foundation for any meaningful performance tuning.

3.1. Memory architecture of Fujitsu Enterprise Postgres

The memory architecture of a Fujitsu Enterprise Postgres (including PostgreSQL) instance is carefully
organized to ensure efficient database operations. It can broadly be classified into two main categories:
the local memory area, which is allocated individually by each backend process for its exclusive use, and
the shared memory area, which is used collectively by all processes of a Fujitsu Enterprise
Postgres/PostgreSQL server instance.

Physical files

Archive
files

Shared memory

Local memory

WAL bu�fer s

Client
application

Shared bu�fer s

Postgres

CLOG bu�fers

Work memoryTemp bu�fers Maintenance
work memory

Backend
process

Utility processes

Checkpointer Background
Writer

Autovacuum
Launcher

WAL
Writer

Logical Replication
Launcher Archiver

User Pro�ile Status
Writer

Logging
Collector

Data
files

WAL
files

Log
files

Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 8 of 48 fast.fujitsu.com

3.1.1. Shared memory area

When a Fujitsu Enterprise Postgres server (including PostgreSQL) starts up, it allocates a shared memory
area. This area is crucial because it serves as a common workspace for all backend processes and is
subdivided into several fixed-sized sub-areas, each serving a distinct purpose.

One of the key components of the shared memory area is the shared buffer pool. This is essentially the
memory cache in which all data modifications and reads occur. Any SQL operation like INSERT, UPDATE,
DELETE, or SELECT must go through this buffer because direct access to data files on disk by user
processes is not allowed. When data is modified, it resides in the shared buffer as dirty data until it is
eventually flushed to the actual data files on disk by a background process known as the background
writer (BG Writer). The size of the shared buffer pool is controlled by the shared_buffers parameter in
the postgresql.conf configuration file. Tuning this parameter effectively is critical for balancing memory
usage and disk I/O.

Another important shared memory component is the WAL (Write-Ahead Log) buffer, which temporarily
holds metadata about data changes. These WAL buffers ensure durability by recording the information
needed to reconstruct data modifications during crash recovery. The WAL data is then flushed to
persistent storage files called WAL files by the WAL writer background process. The wal_buffers
parameter governs the amount of memory reserved for these buffers.

Additionally, there is the CLOG (commit log) buffer, which is dedicated to tracking the transaction
statuses whether they are committed, in-progress, or aborted. This buffer helps in quickly determining
the outcome of transactions without frequently accessing the commit log files on disk. Unlike shared
buffers or WAL buffers, the CLOG buffer does not have a user-configurable parameter; it is automatically
managed by Fujitsu Enterprise Postgres/PostgreSQL’s internal mechanisms and is shared by all server
processes.

3.1.2. Local memory area

Each backend process in Fujitsu Enterprise Postgres also maintains its own local memory area, which is
private to that process. This memory is allocated at the start of a session and is essential for query
processing. It is subdivided into several important areas, with either fixed or dynamically determined
sizes depending on the workload and configuration.

The most prominent among these is the work memory, governed by the work_mem parameter. This
memory is allocated whenever Fujitsu Enterprise Postgres/PostgreSQL needs to perform sort operations
(such as those arising from ORDER BY, DISTINCT, or merge joins) or to build hash tables (used in hash
joins, hash-based aggregations, or IN clause evaluations). In complex SQL statements, multiple sort and
hash operations can occur simultaneously, and each gets its own chunk of work memory. This is why
setting work_mem too high can be risky, as it might consume excessive RAM if many such operations run
in parallel, potentially starving the system of memory needed for other tasks.

Another vital segment is the maintenance work memory, which comes into play during maintenance
activities like creating or rebuilding indexes (REINDEX), adding foreign key constraints, and performing
VACUUM operations. This area is regulated by the maintenance_work_mem parameter and generally
benefits from being larger than work_mem since maintenance operations can be intensive and benefit
from more memory.

Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 9 of 48 fast.fujitsu.com

Lastly, there are temporary buffers, used specifically when dealing with temporary tables often during
large sorts or hash operations that cannot be entirely contained within the regular work memory. These
buffers are session-specific, meaning each database session manages its own pool of temporary buffers
independently. This helps isolate the memory consumption of temporary operations to the scope of
individual sessions.

Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 10 of 48 fast.fujitsu.com

4. Tuning technique

4.1. Introduction to Fujitsu Enterprise Postgres#PostgreSQL tuning approach

Performance tuning for Fujitsu Enterprise Postgres/PostgreSQL (or any enterprise-grade database like
FUJITSU Enterprise Postgres) is far more than just tweaking configuration files. It is a careful, systematic
process that addresses performance holistically from the underlying infrastructure all the way to the
database engine itself. The diagram you’ve provided illustrates a proven tuning methodology in a
stepwise flow. It starts by verifying the foundation, moves upward through the application layer, and
finally focuses on the Fujitsu Enterprise Postgres/PostgreSQL server settings. Importantly, it also
emphasizes knowing when to stop tuning to prevent unnecessary risk or complexity.

4.1.1. Start with the operating system

Any database system, including Fujitsu Enterprise Postgres/PostgreSQL, ultimately depends on the
health and efficiency of the operating system it runs on. This is why the very first step in the tuning
approach is to check the OS health to ensure that the problem truly lies within the database layer. If the
underlying hardware is stressed whether due to CPU overload, memory exhaustion leading to swapping,
disk I/O bottlenecks, or network instability then no amount of Fujitsu Enterprise Postgres/PostgreSQL
tuning will fix the root problem. Administrators should use OS-level tools like vmstat, iostat, sar, top,
mpstat, etc. to assess CPU, memory, and disk performance, making sure the system is not under
excessive load. Only after ruling out these foundational issues should attention turn to Fujitsu Enterprise
Postgres/PostgreSQL itself.

Operating
system
tuning

• Check CPU, memory, disk,
and network health to
ensure the slowdown is
actually in the database.

Check the
application

SQLs

• Optimize SQL queries before
changing database settings.

• Look for costly operations like full
table scans or missing indexes.

Tune
database

parameters

• Find the main performance
bottleneck.

• Adjust settings that will give
the biggest improvement.

Stop
• End tuning when

your desired
results are
achieved.

Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 11 of 48 fast.fujitsu.com

4.1.2. Check the application SQLs

Once the operating system is confirmed to be healthy, the next step is to examine the application layer.
Often, what appears to be a database performance problem is caused by inefficient SQL queries,
missing indexes, or flawed application logic. The tuning methodology stresses that before making any
changes to the database server configuration, you should optimize the SQL issued by the application.
This includes rewriting queries to avoid unnecessary sequential scans, ensuring appropriate indexes exist,
batching operations instead of issuing thousands of individual statements, and using EXPLAIN plans to
diagnose costly joins or sorts. Optimizing here can yield dramatic improvements because bad SQL tends
to overwhelm database resources regardless of server tuning.

4.1.3. Tune database server configuration

With the operating system stable and the application generating efficient SQL, attention can then move
to tuning Fujitsu Enterprise Postgres/PostgreSQL ’s internal configuration. This step involves identifying
the biggest bottleneck perhaps through tools like pg_stat_activity, pg_stat_statements, or
external monitoring dashboards and then tuning the area with the greatest potential impact. That might
mean increasing shared_buffers to better cache frequently accessed data, adjusting work_mem to
reduce disk-based sorts, modifying WAL settings for smoother checkpoints, or fine-tuning autovacuum
parameters to control table bloat and few more parameters. Crucially, each change should be made
incrementally and validated with careful measurement to avoid introducing new issues.

This structured tuning methodology is designed to be logical, sequential, and evidence driven. By
beginning with the operating system, then addressing the application layer, and finally tuning the Fujitsu
Enterprise Postgres (including PostgreSQL) configuration itself, administrators can tackle performance
issues at the right layer, in the right order. In short, this approach is not just about speeding up Fujitsu
Enterprise Postgres/PostgreSQL; it’s about doing so in a sustainable, risk-aware way that ensures your
database infrastructure remains robust and efficient.

Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 12 of 48 fast.fujitsu.com

5. Operating system tuning

5.1. Kernel parameters

Kernel parameters are low-level settings that control how the Linux operating system manages critical
system resources such as memory, shared memory segments, semaphores, file handles, and virtual
memory behaviour. These parameters play a fundamental role in the overall performance and stability of
applications running on the server including Fujitsu Enterprise Postgres/PostgreSQL. A Fujitsu Enterprise
Postgres (including PostgreSQL) database relies heavily on efficient memory allocation, I/O handling, and
process management, all of which are influenced by the Linux kernel’s configuration. If these parameters
are not tuned properly or are left at conservative defaults, the database server might experience
degraded performance, increased latency, or even failures under heavy load.

For example, insufficient shared memory settings could prevent Fujitsu Enterprise Postgres/PostgreSQL
from allocating the necessary shared_buffers, or poor virtual memory settings could lead to excessive
swapping. Therefore, it’s essential to carefully configure these kernel parameters in line with the specific
hardware resources of the database server and the nature of its workload whether it’s OLTP with many
small transactions or large analytical queries to ensure Fujitsu Enterprise Postgres/PostgreSQL can fully
utilize the underlying system capabilities.

5.1.1. Shared memory and semaphores, How Fujitsu Enterprise Postgres#PostgreSQL uses
them

Fujitsu Enterprise Postgres/PostgreSQL requires the operating system to support inter-process
communication (IPC), which mainly involves shared memory segments and semaphores. On Unix-like
systems, this is typically provided via System V IPC, POSIX IPC, or sometimes both. Windows uses a
different approach that isn’t covered here.

By default, Fujitsu Enterprise Postgres/PostgreSQL allocates a very small amount of System V shared
memory just to enough for control data and relies more on anonymous memory via mmap for its larger
shared buffer needs. However, depending on the shared memory type setting, Fujitsu Enterprise
Postgres/PostgreSQL can be configured to use a single large System V shared memory block instead. In
addition, when the server starts, it creates many semaphores, which may be used either by System V or
POSIX implementations depending on the platform. For example, Linux and FreeBSD generally use
POSIX semaphores, while other systems may rely on System V.

Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 13 of 48 fast.fujitsu.com

5.1.2. System limits and what happens when you hit them

System V IPC resources are controlled by kernel-wide limits. If Fujitsu Enterprise Postgres/PostgreSQL
tries to allocate more shared memory or semaphores than the system allows, it won’t start. It will
typically print an error message indicating which limit was exceeded and how to adjust it. Common
errors include “could not create shared memory segment” or confusing messages like “No space
left on device” even though disk space is fine.

The most important shared memory parameters are:

 SHMMAX: The maximum size of a single shared memory segment. This must be large enough to
accommodate what Fujitsu Enterprise Postgres/PostgreSQL needs.

 SHMMIN: The minimum size of a shared memory segment, typically just 1 byte.

 SHMALL: The total amount of shared memory pages that can be used across the system. This often
needs to be set to roughly same as SHMMAX or ceil (SHMMAX/PAGE_SIZE), plus extra for other
processes.

 SHMSEG: The maximum number of shared memory segments a single process can attach to. Fujitsu
Enterprise Postgres/PostgreSQL generally only needs 1.

 SHMMNI: The maximum number of shared memory segments system-wide, which must allow for
Fujitsu Enterprise Postgres/PostgreSQL and other applications. This often needs to be set to roughly
the same as SHMSEG plus extra for other processes.

For semaphores, key parameters include:

 SEMMNI: Controls the maximum number of semaphore sets. Fujitsu Enterprise Postgres/PostgreSQL
groups semaphores into sets of 19 plus a special “magic number” semaphore, so this needs to be
calculated based on connection settings. This often needs to be set at least
ceil((max_connections + autovacuum_max_workers + max_wal_senders +

max_worker_processes + 7) / 19), plus extra for other processes.

 SEMMNS: The total number of semaphores allowed on the system. It needs to be large enough to
support all connections, autovacuum workers, WAL senders, and background workers. This often
needs to be set at least ceil((max_connections + autovacuum_max_workers +
max_wal_senders + max_worker_processes + 7) / 19) * 20, plus extra for other processes.

 SEMMSL: The maximum number of semaphores per set, which Fujitsu Enterprise Postgres/PostgreSQL
needs to be at least 20.

Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 14 of 48 fast.fujitsu.com

5.1.3. How do these parameters matter¡

For each allowed database connection (max_connections), autovacuum worker
(autovacuum_max_workers), WAL sender (max_wal_senders), and background worker
(max_worker_processes), Fujitsu Enterprise Postgres/PostgreSQL allocates a semaphore. For the
System V model, these are grouped in sets of 19, plus one extra semaphore per set. That means even
modest changes to your connection counts can require significantly more semaphores.

For example, if you raise max_connections from 100 to 500, your required SEMMNS and SEMMNI values
must increase accordingly. If these values are too low, Fujitsu Enterprise Postgres/PostgreSQL may fail to
start or accept new connections, often showing a misleading message like “No space left on
device”.

The concept of “grouped in sets of 19” is explicitly defined in PostgreSQL’s source code (found in
src/backend/port/sysv_sema.c) as:

#define SEMAS_PER_SET 19

This was chosen to stay safely below typical SEMMSL defaults (commonly around 25) on Unix/Linux
systems, thereby avoiding immediate kernel limit violations while minimizing the number of separate
system calls and management overhead.

5.1.4. POSIX vs System V

When Fujitsu Enterprise Postgres/PostgreSQL uses POSIX semaphores which is the default and preferred
implementation on modern Linux systems the situation is considerably simpler. POSIX semaphores
generally do not depend on hard-coded kernel-wide constraints like SEMMNI or SEMMNS, largely
eliminating the need for extensive tuning of /proc/sys/kernel/sem. Each semaphore is created as an
independent object, so there is no concept of grouping into sets of 19, nor are there strict system-wide
caps that can block the server from starting. However, it’s important to understand that the total number
of semaphores needed by Fujitsu Enterprise Postgres/PostgreSQL does not change it still requires one
semaphore per allowed connection or worker process. The key difference is that with POSIX
semaphores, you are far less likely to run into operating system-level barriers that prevent the database
from scaling to the workloads you’ve configured.

5.1.5. Why tune kernel parameters¡

As we understand, Fujitsu Enterprise Postgres/PostgreSQL fundamentally depends on the operating
system kernel to provide shared memory and semaphores for efficient multi-process operation. Kernel
parameters such as SHMMAX, SHMALL, SEMMNI, and SEMMNS directly control these critical resources under
the System V model. Without properly configuring these parameters to align with your
max_connections, expected workload, and memory requirements, your database may not start or
could crash under higher concurrency loads. By understanding and carefully setting these values, you
ensure that Fujitsu Enterprise Postgres/PostgreSQL can run reliably, scale effectively, and take full
advantage of the hardware resources you’ve provisioned for your environment.

Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 15 of 48 fast.fujitsu.com

5.1.6. getconf PAGE­SIZE

This command reports the size of a single memory page on the system. On virtually all x86_64 RHEL
systems, this returns 4096 bytes (4KB). This page size is fundamental to how memory is allocated and
managed by the Linux kernel. Knowing the page size is important when interpreting memory metrics,
page faults, and database buffer configurations. In Fujitsu Enterprise Postgres/PostgreSQL, buffer
management and I/O align with the operating system’s page size to optimize performance.

5.1.7. vm dirty­bytes

This parameter sets an absolute limit (in bytes) on how much data can be dirty (modified but not yet
written to disk) across the system before the process doing writes is forced to flush data to disk. On
many systems this is 0 by default, meaning the system relies instead on vm.dirty_ratio. Using
vm.dirty_bytes is recommended for database servers because it gives predictable thresholds
regardless of total RAM. For Fujitsu Enterprise Postgres/PostgreSQL workloads, it is typically set to
600MB (629145600) to balance caching efficiency with writeback pressure, ensuring dirty data doesn’t
grow too large and cause sudden I/O spikes.

5.1.8. vm dirty­background­bytes

This sets the threshold (in bytes) at which the kernel’s background writeback daemon starts flushing
dirty pages to disk in the background. This is the “soft” limit, designed to keep the system responsive.
Like vm.dirty_bytes, this is often 0 by default, causing vm.dirty_background_ratio to apply
instead. For Fujitsu Enterprise Postgres/PostgreSQL servers, it is best to explicitly set
vm.dirty_background_bytes to a lower value than vm.dirty_bytes, typically 300MB (314572800),
so that background flushing starts early, smoothing out disk writes and avoiding large bursts.

5.1.9. vm dirty­ ratio

This parameter specifies the maximum percentage of total system memory that can be dirty before the
process performing the write is forced to flush data to disk. By default, this is usually 20%, which can be
excessively large on systems with high RAM (e.g., on a 128GB server, it would allow up to 25GB dirty
pages). Because of this, on database servers it’s better to disable this by setting it to 0 and rely on
vm.dirty_bytes for tighter, more predictable control.

5.1.10. vm dirty­background­ ratio

This parameter defines the percentage of system memory that can be dirty before the kernel’s
background writeback daemon begins flushing data. It defaults to 10%, which again is quite large on
high-memory systems and could delay the start of background flushing. It’s advisable to set this to 0
when using vm.dirty_background_bytes, favouring fixed byte-based limits which scale better with
modern large-RAM servers.

Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 16 of 48 fast.fujitsu.com

5.1.11. vm swappiness

This controls the kernel’s inclination to move processes out of RAM and onto swap space. The default is
typically 60, which is balanced for general-purpose workloads but too aggressive for database servers.
For Fujitsu Enterprise Postgres/PostgreSQL, frequent swapping can severely degrade performance
because database buffer caches must stay in memory. Setting this between 1 and 5 minimizes swap
usage, instructing the kernel to swap only under significant memory pressure, thereby protecting
database performance.

5.1.12. vm zone­ reclaim­mode

On NUMA (Non-Uniform Memory Access) systems, this setting controls whether the kernel will prefer to
reclaim memory from its local NUMA node before using free memory on other nodes. While this can
improve locality for certain workloads, for databases it risks underutilizing available memory across
NUMA nodes and can introduce unwanted throttling. Therefore, on Fujitsu Enterprise
Postgres/PostgreSQL servers, this should be set to 0, disabling zone reclaim so the database can freely
use memory across all NUMA nodes, ensuring maximum cache effectiveness.

5.1.13. vm overcommit­memory

This governs the kernel’s strategy for handling memory allocation requests that might exceed total
physical RAM. A value of 0 (the default) lets the kernel make heuristic decisions, which can sometimes
approve more allocations than the system can safely support, risking unexpected out-of-memory (OOM)
kills under load. A value of 1 allows allocating memory beyond what is physically available without
checks, which is unsafe for critical database workloads. The recommended setting for Fujitsu Enterprise
Postgres/PostgreSQL is 2, which tells Linux to enforce a strict allocation policy: memory cannot be
overcommitted beyond the threshold determined by vm.overcommit_ratio. This ensures that Fujitsu
Enterprise Postgres/PostgreSQL and other processes are only granted memory when there is confidence
that sufficient physical memory exists, greatly reducing the chance of abrupt process termination due to
OOM.

5.1.14. vm overcommit­ ratio

This will work in conjunction with vm.overcommit_memory when it is set to 2, defining the portion of
physical RAM that is available for allocation beyond what processes directly reserve. Expressed as a
percentage, this ratio guides the kernel in calculating the total memory commit limit. For example, on a
server with 64 GB of RAM and vm.overcommit_ratio set to 50, the system permits memory
allocations up to 96 GB which is computed by adding 50% of the RAM (32 GB) to any available swap
space. This configuration gives Fujitsu Enterprise Postgres/PostgreSQL ample flexibility to aggressively
utilize memory, which is especially beneficial for resource-intensive operations such as large sorts, hash
joins, and maintenance tasks, while still ensuring that total allocations remain within a predictable
boundary. By preventing unrestricted overcommitment, it safeguards the server from abrupt process
termination by the OOM killer, striking an optimal balance between maximizing memory utilization and
preserving overall system stability.

Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 17 of 48 fast.fujitsu.com

5.2. Device configuration

5.2.1. Scheduler

On modern Linux systems, the I/O scheduler plays a crucial role in determining how efficiently the kernel
manages read and write requests to disk. Since kernel version 2.6, Linux administrators have had the
flexibility to choose different schedulers to optimize their systems based on the type of storage and
workload.

For RHEL, which use the multi-queue block layer (blk-mq) by default, the recommended schedulers
have evolved. For traditional spinning disks (HDDs), it is advisable to use the mq-deadline scheduler,
which provides predictable latency by prioritizing request deadlines. For systems equipped with SSDs or
storage devices that have their own sophisticated internal I/O scheduling (such as enterprise-grade
controllers), it is generally recommended to use the none scheduler. The none scheduler effectively
bypasses the kernel’s reordering logic, which is unnecessary for such devices and can even degrade
performance.

This shift away from older defaults like cfq (Completely Fair Queuing) is because cfq attempts to fairly
distribute I/O, which can counterintuitively slow down high-performance SSDs. Always remember that
the optimal choice can depend on the workload, so benchmarking different schedulers on your actual
system is encouraged, provided this is done during a maintenance window with explicit approval.

To check which scheduler is currently active for a given device (e.g., nvme0n1 or sda), run:

cat /sys/block/<device>/queue/scheduler

The typical output might look like:

[mq-deadline] none

where the scheduler in brackets is currently active.

To temporarily change the scheduler, for example to none on an NVMe device, execute:

echo none > /sys/block/<device>/queue/scheduler

Confirm the change by checking the scheduler again. After benchmarking, you should revert to the
original scheduler to ensure consistency.

If benchmarks demonstrate a significant improvement with a different scheduler, you can make the
setting persistent by adding a kernel boot parameter in the GRUB configuration, such as:

GRUB_CMDLINE_LINUX="elevator=none"

followed by running grub2-mkconfig to regenerate the configuration. This ensures the chosen
scheduler persists across reboots.

Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 18 of 48 fast.fujitsu.com

5.2.2. Read ahead

The read-ahead setting influences how many kilobytes the kernel pre-fetches into the page cache
during sequential reads. A larger read-ahead value can improve throughput on workloads that perform
large sequential reads, such as database scans. By default, many Linux distributions, including RHEL 8
and 9, use a relatively small value, commonly 128 KB.

To view the current read-ahead value for a device, use:

cat /sys/block/<device>/queue/read_ahead_kb

For example:

128

You can experiment with increasing this value to 4096 KB (or another appropriate figure based on your
workload) by running:

echo 4096 > /sys/block/<device>/queue/read_ahead_kb

This change is immediate but not persistent across reboots. To make it permanent, include it in
/etc/rc.d/rc.local or create a custom udev rule.

Always benchmark the impact of this change, and ensure it aligns with the access patterns of your
Fujitsu Enterprise Postgres/PostgreSQL or similar database workloads. After testing, return the setting to
its original value if not adopting it permanently.

Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 19 of 48 fast.fujitsu.com

5.3. Mount point options in Linux for databases

Mount options at the filesystem level are often overlooked, yet they play a critical role in tuning a Linux
environment for high-performance database workloads such as Fujitsu Enterprise Postgres/PostgreSQL.
Selecting the right mount options can reduce unnecessary I/O, prolong the life of SSDs, and optimize
data reliability in the presence of advanced hardware. Below is a detailed look at some of the most
impactful options.

5.3.1. noatime

By default, many Linux filesystems track the last access time (atime) of each file. This means that every
time a file is read even if just queried by the database an additional write is performed to update its
access timestamp. In database workloads, this can lead to a massive volume of redundant writes since
databases perform frequent reads.

Using the noatime mount option tells the kernel not to update the last access time on files when they
are read, effectively eliminating these unnecessary write operations. This reduces I/O pressure on the
disk subsystem, lowers write amplification on SSDs, and indirectly improves throughput and latency,
especially for read-heavy database operations.

For example, mounting a filesystem like this:

/dev/sda1 /var/lib/pgsql/data ext4 defaults,noatime 0 2

ensures that Fujitsu Enterprise Postgres/PostgreSQL’s frequent index scans and sequential reads don’t
generate hidden writes, preserving performance and extending the lifespan of SSDs.

5.3.2. discard

SSDs manage data differently from spinning disks. Over time, as blocks are written and erased, the SSD’s
internal controller needs to know which blocks are truly unused so it can perform efficient garbage
collection and wear leveling. Without this, the SSD may slow down as it runs out of clean blocks to write.

The discard mount option enables inline TRIM commands, which tell the SSD when files are deleted, or
blocks are released. This helps maintain optimal write performance by ensuring the SSD is always aware
of which blocks are safe to erase or reallocate.

However, using discard at mount time can introduce slight latency during normal filesystem operations
because TRIM happens immediately when files are deleted. For high-performance or latency-sensitive
database workloads, it’s often better to omit discard from /etc/fstab and instead run scheduled
fstrim jobs (e.g., weekly via cron or systemd timers). This approach batches TRIM operations at off-
peak hours, reducing impact on transactional performance while still maintaining SSD health.

Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 20 of 48 fast.fujitsu.com

5.3.3. nobarrier

Modern filesystems like ext4 and xfs implement barriers to ensure that data is physically written to disk
in a safe order, protecting against corruption if the system crashes. These barriers enforce that data
blocks are written and acknowledged by the hardware before metadata is updated.

The nobarrier mount option disables these explicit write barriers. This can improve performance by
skipping forced flushes to disk after transactions, reducing latency on commit-heavy workloads like
OLTP databases. However, this only makes sense if the underlying storage hardware already guarantees
data integrity through its own mechanisms most commonly through battery-backed write caches
(BBWC) or non-volatile cache (NVC).

If your storage array or RAID controller has battery-backed cache, then even in the event of a power
failure, unwritten data in the cache can be safely written once power returns. In such scenarios,
nobarrier can safely be used to achieve higher throughput. Conversely, enabling nobarrier on
standard disks or SSDs without this protection risks data loss or corruption during unexpected power
outages.

Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 21 of 48 fast.fujitsu.com

5.4. Redundant Array of Independent Disks _RAID-

For systems storing database data, using some form of RAID is a critical best practice. RAID combines
multiple physical disks into a single logical unit to achieve one or more goals: increased performance,
higher availability, and data redundancy. This approach protects against disk failures that could
otherwise cause catastrophic data loss, while also improving throughput for database workloads that
issue many parallel reads and writes.

It is essential, however, to choose the RAID level carefully. Not all RAID types are equally suitable for
database systems. The wrong choice can undermine performance or resilience, or both.

5.4.1. Less Desirable RAID Levels _Bad- : RAID 5. RAID 6 ƒ RAID 0

RAID 5 (striping with distributed parity) and RAID 6 (striping with dual distributed parity) are popular in
general-purpose file storage because they maximize usable storage capacity while still tolerating disk
failures (one disk for RAID 5, two disks for RAID 6). However, these RAID levels have fundamental
downsides for database workloads, especially those with frequent random writes.

The reason lies in how parity is managed. Each time data is written, parity information must be
recalculated and written to other disks in the array. This introduces additional I/O overhead known as the
read-modify-write penalty. For writes that are small and scattered common in transactional databases
this becomes a bottleneck, resulting in high write latency and reduced throughput.

For workloads that primarily perform large sequential reads (such as data warehouses), RAID 5 and RAID
6 can still deliver acceptable performance. Some modern RAID controllers attempt to mitigate the write
penalty by using SSD-based non-volatile caches, which absorb writes and later flush them to the slower
disks while maintaining parity. Even so, these setups are generally more complex and still may not match
the consistency or raw throughput needed for a heavily loaded OLTP database.

RAID 0 (pure striping) spreads data evenly across multiple disks without any parity or mirroring. This
means it offers excellent read and write performance, making full use of all disks in parallel. However,
RAID 0 comes with a severe trade-off: there is no redundancy whatsoever. If even a single disk in the
array fails, the entire array becomes unrecoverable, resulting in total data loss. This is unacceptable for
production database environments where data integrity is paramount. RAID 0 is typically only
appropriate for scratch or temporary datasets where data can be easily recreated.

Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 22 of 48 fast.fujitsu.com

5.4.2. Better RAID Options _Good- : RAID 1

RAID 1 is based on mirroring, where identical copies of data are written simultaneously to two or more
disks. This means every piece of data exists in two places at once. As a result, RAID 1 provides excellent
redundancy: if a single disk fails, no data is lost because the other disk still holds a complete, up-to-date
copy.

In addition to redundancy, RAID 1 offers performance benefits. Since any read request can be fulfilled by
either of the mirrored disks, the system can distribute read operations across the drives, improving
throughput for read-heavy workloads. For write operations, however, each write must occur on both
disks, so RAID 1 write performance is roughly equivalent to a single drive.

There are some important considerations. Because data is duplicated, RAID 1 effectively cuts storage
capacity in half (two 1TB drives yield only 1TB usable). Additionally, while RAID 1 protects against the
failure of a single drive, during the period after a drive fails known as degraded mode the array is
vulnerable. If another drive fails before the first one is replaced and fully rebuilt, all data could be lost.
For this reason, best practice is to keep hot spare drives on hand, allowing the RAID controller to
immediately start rebuilding the array with a new disk, minimizing the window of risk.

RAID 1 is widely used for transactional database systems that prioritize data safety and where capacity
demands are modest compared to redundancy requirements.

5.4.3. Optimal RAID for Databases _Ideal- : RAID 10 _RAID 1₽0-

RAID 10, sometimes written as RAID 1+0, combines the benefits of both striping (RAID 0) and mirroring
(RAID 1) by layering them: data is first mirrored, then striped across multiple mirrored pairs. This design
allows RAID 10 to deliver both high performance and robust redundancy, making it especially well-
suited for demanding database environments.

From a performance standpoint, RAID 10 inherits the parallel read and write benefits of RAID 0 striping,
distributing data across multiple disks so that simultaneous I/O operations can be handled efficiently.
Meanwhile, the mirrored structure means that each piece of data is still stored on at least two drives, so
any single drive failure does not result in data loss.

The redundancy of RAID 10 is stronger than RAID 5 or RAID 6 in many real-world scenarios, because it
does not rely on parity calculations or suffer the write penalties those RAID levels introduce. RAID 10 can
tolerate multiple disk failures provided no two failures occur within the same mirrored pair. For example,
in a four-disk RAID 10 array, you could lose one disk from each mirrored pair and still maintain full data
integrity.

However, RAID 10 does require sacrificing storage capacity for redundancy, just like RAID 1. Half of the
total raw disk space is used to store mirrored data. For instance, an eight-disk RAID 10 array with 1TB
disks would provide 4TB of usable storage.

Because RAID 10 offers both excellent read and write performance and strong resilience to drive
failures, it is often considered the ideal RAID level for high-performance OLTP databases like Fujitsu
Enterprise Postgres/PostgreSQL, where maintaining low latency under heavy write loads is critical.

Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 23 of 48 fast.fujitsu.com

5.5. File systems

File systems

When designing storage for a Fujitsu Enterprise Postgres/PostgreSQL database, the choice of file system
plays a significant role in balancing performance, durability, and operational simplicity. This is particularly
true for the transaction log (WAL), which has very specific I/O patterns. The WAL primarily involves
sequential writes that ensure data durability and crash recovery. Unlike the main database data files,
WAL does not rely on the file system’s journaling to protect against corruption. Fujitsu Enterprise
Postgres/PostgreSQL’s internal mechanisms already safeguard consistency by replaying or ignoring
incomplete WAL segments during recovery. As a result, a journaling file system is not required for the
transaction log, and minimizing journaling overhead can improve performance.

Linux provides several file system options suitable for Fujitsu Enterprise Postgres/PostgreSQL. Each of
these comes with different behaviours and trade-offs that impact WAL performance and reliability.

5.5.1. EXT2

EXT2 is the original non-journaling file system from the extended filesystem family. It was designed
before journaling became common, which means it avoids the extra writes associated with maintaining a
journal. For workloads dominated by sequential writes like the WAL, this is beneficial because it provides
the lowest possible write overhead, allowing the system to fully utilize the underlying disk’s bandwidth.

To ensure data durability on EXT2, it’s common to mount it with the sync option, which forces every
write to be immediately flushed to disk. This guarantees that data reaches persistent storage without
relying on delayed buffering. While this adds latency to everyone write operation, it ensures the WAL’s
primary goal is that committed transactions are safely recorded on disk. The combination of no
journaling and explicit synchronous writes makes EXT2 with sync a straightforward, predictable choice
for dedicated WAL storage.

However, EXT2 does lack many of the advanced features of newer file systems, such as extents for
managing large files or built-in recovery tools. It is best suited for simple, isolated WAL partitions where
maximum sequential write performance is desired.

5.5.2. EXT3

EXT3 was developed to extend EXT2 by adding a journal, improving system recovery after crashes or
unexpected shutdowns. By default, EXT3 journals both metadata and (optionally) data, reducing the risk
of corruption but at the cost of additional writes.

For Fujitsu Enterprise Postgres/PostgreSQL’s WAL directories, these extra writes are unnecessary and can
degrade performance. Fortunately, EXT3 supports the data=writeback mount option, which configures
the file system to journal only metadata, not the actual file data. This significantly lowers write
amplification while still protecting directory structures and inode consistency after a crash.

This approach provides a middle ground: performance closer to EXT2, but with faster file system checks
and metadata recovery thanks to the journal. Using EXT3 in writeback mode is a practical way to
minimize I/O overhead for WAL files while retaining a layer of protection that simplifies post-crash
recovery of the file system structure itself.

Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 24 of 48 fast.fujitsu.com

5.5.3. EXT4

EXT4 is the modern evolution of the extended filesystem family and the default on most current Linux
distributions, including RHEL 8 and 9. It was designed to overcome the scalability and performance
limitations of EXT3. EXT4 introduces support for extents, delayed allocation, multiblock allocation, and
improved performance on both small and large files.

By default, EXT4 uses the data=ordered journaling mode, which ensures that file data is flushed to disk
before its metadata is committed to the journal. This mode balances data safety and performance well,
making EXT4 a solid choice for general Fujitsu Enterprise Postgres/PostgreSQL data directories.

For the WAL, however, administrators often mount EXT4 with the data=writeback option, which
journals only metadata. This reduces the extra writes associated with journaling file contents, aligning
EXT4’s behaviour more closely with EXT3 in writeback mode. At the same time, EXT4 still offers
advanced allocation strategies that improve sequential write patterns, reduce fragmentation, and speed
up large file writes all directly beneficial to WAL workloads.

Because EXT4 also features faster fsck operations and broad tool support, it’s often chosen as a
balanced default, combining the performance and minimal journaling needed for WAL with robust long-
term stability for database environments.

Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 25 of 48 fast.fujitsu.com

5.5.4. XFS

XFS is a high-performance, 64-bit journaling file system designed for handling large files and massive
parallel I/O workloads. Unlike EXT4 or EXT3, XFS journals metadata by design and does not provide
options to disable this. However, since it journals only metadata not data blocks so the impact on
sequential write-heavy operations like WAL is minimal.

XFS shines in environments with large files, heavy concurrency, and multiple parallel I/O threads. It
features aggressive pre-allocation, delayed logging, and efficient extent-based allocation, which
together minimize fragmentation and optimize sequential write throughput. This makes XFS an excellent
choice not just for WAL directories but also for main Fujitsu Enterprise Postgres/PostgreSQL data
directories, especially in high-throughput OLTP or large OLAP setups.

Additionally, XFS scales well on multi-core systems and across hardware RAID volumes, maintaining
consistent performance as system demand grows. Its proven stability and powerful management tools
make it a frequent recommendation in enterprise database deployments.

5.5.5. Remote file systems

One critical caution: remote or network file systems such as NFS should never be used to store the WAL
or the main database data. Network filesystems introduce latency, inconsistent write acknowledgments,
and additional failure scenarios like network partitions or timeouts. These characteristics can severely
undermine Fujitsu Enterprise Postgres/PostgreSQL’s guarantees around transaction durability and crash
recovery. Keeping WAL on locally attached, directly controlled storage is essential for maintaining the
reliability and performance of the database.

So, selecting the right file system for each component of your Fujitsu Enterprise Postgres/PostgreSQL
deployment ensures that I/O patterns are efficiently handled, reducing system overhead and enhancing
overall database performance and resilience.

5.6. Disk separation

5.6.1. pg­wal

The pg_wal directory in Fujitsu Enterprise Postgres/PostgreSQL (or pg_xlog in older versions) contains
the WAL files and handles exclusively sequential writes, contrasting sharply with the random I/O patterns
typical of the main database heap and indexes. If WAL activity is intense, mixing these sequential writes
on the same physical disks as random-access data files leads to I/O contention, where the two different
patterns compete for the same disk heads or storage queues. This contention can degrade performance,
increasing transaction commit latency and slowing general query response times.

To mitigate this, it is best practice to place the WAL directory on a dedicated disk or disk array. Doing
this allows the sequential writes to proceed unhindered, while the main database files continue to use
their own I/O channels for mixed read-write operations. When selecting the filesystem for this dedicated
WAL storage, the same considerations for minimizing journaling and maximizing sequential throughput
apply (as discussed in the File Systems section).

Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 26 of 48 fast.fujitsu.com

5.6.2. pg­stat­tmp

The pg_stat_tmp directory stores transient statistical data that Fujitsu Enterprise Postgres/PostgreSQL
uses for tracking database activity. These statistics are not critical for long-term persistence and do not
need to survive a system reboot. They also occupy very little disk space. Because of these
characteristics, pg_stat_tmp is an ideal candidate for placement on a RAM disk (tmpfs). Hosting it in
memory ensures extremely fast I/O for the statistics collector processes without burdening persistent
storage with unnecessary tiny writes. This can slightly improve performance and reduce wear on SSDs by
absorbing otherwise trivial update operations in volatile memory.

5.6.3. WAL archive

While WAL segments themselves can be stored on optimized filesystems that minimize journaling, it is
critical to treat WAL archives differently. Archived WAL files are essential for point-in-time recovery in
conjunction with base backups. For this reason, WAL archives should be kept on entirely separate
storage from both the live database files and the active WAL directory. This protects against scenarios
where a single storage failure might simultaneously destroy both the main data and the WAL archive,
thereby compromising the ability to perform a recovery. Isolating the WAL archive ensures a higher level
of disaster resilience.

5.6.4. Temporary files

Fujitsu Enterprise Postgres/PostgreSQL creates temporary files to handle operations that exceed the
capacity of memory, such as large sorts or hash aggregations that spill beyond work_mem. If these
temporary files are written to the same disks as the primary database storage, it introduces additional
I/O contention, which can throttle both the query doing the heavy sort and all other concurrent
database activity. This is especially impactful in analytics workloads that trigger many large temporary
operations.

Fujitsu Enterprise Postgres/PostgreSQL allows administrators to specify dedicated locations for these
files using temp_tablespaces. By creating and assigning one or more separate tablespaces specifically
for temporary files, you can direct this spillover activity to other disks, preserving the performance of the
main database volumes. This also helps prevent situations where a flood of large temporary files fills up
the primary database storage, risking a forced shutdown due to running out of space.

For environments prone to generating significant temporary data, monitoring is equally important. The
log_temp_files setting enables logging of temporary file creation events, which can then be analyzed
with tools like pgBadger to identify trends and optimize workload patterns.

Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 27 of 48 fast.fujitsu.com

6. Check application SQLs

6.1. Why SQL tuning is Important

SQL tuning is a critical discipline in database performance management, directly influencing how
efficiently data is retrieved and manipulated. At its core, SQL tuning ensures that database queries
execute using the least possible system resources such as CPU, memory, and I/O bandwidth while
returning results as quickly as possible. This is vital for maintaining responsiveness in applications,
supporting business processes that rely on timely data access, and controlling the operational costs
associated with compute and storage infrastructure. Poorly written or unoptimized SQL can strain a
database server, leading to high latency, locking contention, excessive disk reads, and even system
instability under heavy workloads. Furthermore, as databases grow in volume and concurrent user
demand increases, the impact of inefficient SQL compounds, potentially degrading the performance of
unrelated queries and entire applications. Effective SQL tuning addresses these challenges by refining
queries and ensuring that they leverage indexes, proper joins, and optimized execution plans. This not
only enhances the immediate speed of data operations but also contributes to the long-term scalability
of systems, allowing them to handle larger datasets and more users without costly hardware upgrades.

6.2. Identifying and minimizing sequential scans

One of the most common performance pitfalls in SQL workloads is the unnecessary use of sequential
scans (also called table scans). A sequential scan occurs when the database engine reads each row of a
table to find records matching a query’s WHERE clause. While this approach is entirely appropriate for
small tables or queries that must process most of the table’s data, it becomes highly inefficient on large
datasets when only a small subset of rows is needed. Excessive sequential scanning leads to more disk
I/O, increased buffer cache churn, higher CPU usage, and slower query response times. This not only
affects the performance of the specific query but also places additional strain on shared resources,
potentially slowing down unrelated operations across the database.

Identifying sequential scans typically involves examining the query execution plan. In Fujitsu Enterprise
Postgres/PostgreSQL, this is done using the EXPLAIN or EXPLAIN ANALYZE command, which shows how
the query planner intends to (or did) execute the query. If the plan reveals a Seq Scan operation on a
large table, it is a strong signal that the planner could not find a more efficient index path, possibly due
to missing indexes, outdated statistics, or non-selective query conditions.

For example, consider the following Fujitsu Enterprise Postgres/PostgreSQL session:

EXPLAIN SELECT * FROM orders WHERE customer_id = 42;

If the output is:

Seq Scan on orders (cost=0.00..12500.00 rows=500 width=128)
Filter: (customer_id = 42)

this indicates that Fujitsu Enterprise Postgres/PostgreSQL will perform a sequential scan on the orders
table, scanning every row to evaluate whether customer_id = 42. This can be highly inefficient if the
orders table contains millions of rows.

Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 28 of 48 fast.fujitsu.com

To minimize unnecessary sequential scans, you can add an index that supports this query:

CREATE INDEX idx_orders_customer_id ON orders(customer_id);

Re-running the EXPLAIN should now produce:

Index Scan using idx_orders_customer_id on orders (cost=0.15..8.20 rows=10
width=128)
Index Cond: (customer_id = 42)

This demonstrates that Fujitsu Enterprise Postgres/PostgreSQL can now use an Index Scan, dramatically
reducing the number of rows it must examine. In real-world scenarios, this improvement translates to
much faster query response times and reduced I/O.

Additionally, regularly running ANALYZE to refresh table statistics helps the planner make informed
decisions:

ANALYZE orders;

This updates the statistics about data distribution in the orders table, improving the chances the planner
correctly estimates the cost of using an index versus a sequential scan.

By examining execution plans and taking corrective actions, such as creating appropriate indexes and
maintaining up-to-date statistics, you can effectively reduce unnecessary sequential scans. This
proactive tuning not only optimizes individual query performance but also contributes to overall
database stability and scalability.

Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 29 of 48 fast.fujitsu.com

6.3. Avoiding unused indexes

Indexes are vital tools for speeding up data retrieval, but they come with a trade-off: every index
consumes disk space and adds overhead to data modification operations such as INSERT, UPDATE, and
DELETE. Each time a row is changed, the database must also maintain all related index entries to keep
them in sync with the table data. Consequently, having too many indexes especially those that are rarely
or never used, which can degrade write performance, increase storage costs, and prolong maintenance
operations like VACUUM and REINDEX.

Avoiding unused indexes is therefore an essential aspect of database optimization. The goal is to ensure
that every index serves a meaningful purpose, supporting real queries or enforcing constraints such as
uniqueness. Identifying unused indexes generally involves monitoring query execution over time. Fujitsu
Enterprise Postgres/PostgreSQL, for example, provides the pg_stat_user_indexes system catalog
view, which records how often each index is used for index scans. You can run a query such as:

SELECT relname AS table, indexrelname AS index,
 pg_size_pretty(pg_relation_size(indexrelid)) AS size
FROM pg_stat_user_indexes
WHERE idx_scan = 0
ORDER BY pg_relation_size(indexrelid) DESC;

This SQL will find indexes with an idx_scan count of zero. This means that since the last statistics reset,
these indexes have not been used to support a query. While a low or zero scan count does not
automatically mean the index is unnecessary it might be critical for occasional but performance-
sensitive reports or for enforcing constraints it does signal that you should review its purpose. After
carefully evaluating application requirements, removing truly redundant or obsolete indexes can
streamline write operations, reduce I/O during maintenance tasks, and simplify the overall index
landscape.

Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 30 of 48 fast.fujitsu.com

6.4. Detecting duplicate indexes

Duplicate indexes are another common source of inefficiency. A duplicate index arises when two or
more indexes exist on the same table with identical or nearly identical definitions. This might happen
due to evolving application requirements, oversight during iterative development, or a lack of
documentation on existing schema structures. Duplicate indexes provide no benefit to query
performance because the query planner will generally only pick one index, but they still incur the full
costs associated with index maintenance and storage.

Detecting duplicate indexes is an important database housekeeping task. In Fujitsu Enterprise
Postgres/PostgreSQL, this can be done by querying the system catalogs pg_index to look for indexes
that cover the same columns in the same order and with the same expressions or operator classes.

You can run a query such as:

SELECT indrelid::regclass AS table,
 indkey AS column_numbers,
 array_agg(indexrelid::regclass) AS indexes,
 pg_catalog.pg_get_expr(indpred, indrelid, true) AS expression
FROM pg_index
GROUP BY indrelid, indkey, pg_catalog.pg_get_expr(indpred, indrelid, true)
HAVING count(*) > 1;

6.5. Avoid SELECT •

Using SELECT * to retrieve all columns from a table may appear convenient, especially during
development, but it can lead to inefficient queries and subtle problems in production. By instructing the
database to return every column, SELECT * forces it to fetch and transmit more data than often
necessary. This means extra I/O to read disk pages that include unused columns, higher memory usage
to store larger result sets, and more bandwidth consumed sending unneeded data to the client
application. Additionally, SELECT * tightly couples queries to the exact schema layout, which can cause
unexpected behaviours if new columns are later added to the table.

For example, suppose an application dashboard only needs to show a user’s name and email:

SELECT * FROM users WHERE id = 42;

If the users table has dozens of columns including large JSONB profile settings or high-resolution images
these are fetched even though the application ignores them. This increases response times and memory
consumption unnecessarily. A better approach is to request exactly what is needed:

SELECT name, email FROM users WHERE id = 42;

This makes it clear to the database planner that only those columns are needed, allows the engine to
potentially use narrower indexes, and protects against surprises when the table schema evolves. By
avoiding SELECT *, you not only reduce overhead but also create queries that are clearer, more
maintainable, and robust over time.

Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 31 of 48 fast.fujitsu.com

6.6. Optimize IN vs EXISTS vs JOIN

SQL provides several ways to relate data across tables, and each has distinct performance implications.
The constructs IN, EXISTS, and JOIN often achieve similar logical outcomes but are optimized
differently by the database. Take the case of finding customers who have placed orders. Using IN might
look like:

SELECT customer_id, name
FROM customers
WHERE customer_id IN (SELECT customer_id FROM orders);

This is simple and readable but may become inefficient if the subquery returns thousands of
customer_ids, requiring the database to hold this list in memory and perform repeated membership
checks.

Alternatively, EXISTS is typically faster for purely checking existence, especially with correlated
subqueries:

SELECT customer_id, name
FROM customers c
WHERE EXISTS (
 SELECT 1
 FROM orders o
 WHERE o.customer_id = c.customer_id
);

Here, the database stops searching for each customer as soon as it finds a matching order, minimizing
work.

If you also need data from both tables, a JOIN is generally preferable:

SELECT DISTINCT c.customer_id, c.name, o.order_date
FROM customers c
JOIN orders o ON c.customer_id = o.customer_id;

This allows the query planner to choose optimal join algorithms (like hash or merge joins) and to
combine data in a single step, often outperforming correlated subqueries. The key is to understand your
intent: use EXISTS when merely testing for the presence of related rows, IN for concise checks against
small lists, and JOIN when you want to retrieve additional columns from the related table.

Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 32 of 48 fast.fujitsu.com

6.7. Leverage index:only scans

Index-only scans are an advanced performance feature where the database satisfies a query directly
from index data without reading the underlying table rows. This is possible when all the columns needed
by the query are already stored in the index and when the database’s visibility map indicates that these
rows don’t need additional checks for recent changes. For instance, imagine you have an index:

CREATE INDEX idx_orders_customer_date ON orders(customer_id, order_date);

If you run:

SELECT customer_id, order_date FROM orders WHERE customer_id = 42;

the database can use an index-only scan to retrieve both customer_id and order_date straight from
the index, avoiding extra I/O to fetch data blocks from the main orders table. This significantly reduces
read overhead, especially on large tables, since index pages are usually much smaller and better
clustered for the queried columns.

By contrast, if you queried:

SELECT customer_id, order_date, total_amount FROM orders WHERE customer_id =
42;

the planner must do an index scan, locating matching customer_ids via the index but then fetching
each corresponding row from the table to get total_amount. This is slower, particularly if it involves
many random reads.

Strategically adding frequently queried columns to multi-column indexes known as creating “covering
indexes” which can unlock index-only scans for critical workloads. However, because larger indexes
consume more disk space and slow down writes, this should be carefully planned for high-impact
queries that benefit most from bypassing table lookups.

Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 33 of 48 fast.fujitsu.com

6.8. Consider partitioning

Partitioning is a powerful database design technique that involves splitting a large table into smaller,
more manageable pieces called partitions, each of which can be treated almost like an independent
table. The primary goal of partitioning is to enhance performance and manageability, especially as
tables grow to tens or hundreds of millions of rows. By logically dividing data often by ranges of dates,
IDs, or other key attributes queries that target a specific slice of data can be executed much more
efficiently, as the database only needs to scan relevant partitions instead of the entire table. This is
known as partition pruning.

For example, in a transactional system that records daily orders, partitioning the orders table by month
ensures that a query seeking orders from June 2025 scans only that month’s partition, bypassing data
from other months entirely. This drastically reduces I/O and improves query latency. Partitioning also
simplifies maintenance tasks such as archiving or purging old data. Dropping an old partition is far
quicker and less resource-intensive than running a large DELETE statement on a monolithic table.

When should you consider partitioning?

 Partitioning is especially beneficial under several common circumstances:
Large tables: When a single table grows into hundreds of millions or billions of rows, full-table scans
and index maintenance become increasingly expensive. Partitioning divides this into smaller physical
units, making operations more efficient.

 Time-based data: For workloads such as logs, event histories, or transactional systems that naturally
accumulate data over time, partitioning by date (daily, monthly, yearly) allows easy aging out of old
data and faster time-based queries.

 Frequent bulk deletes or archives: If your application regularly purges old data, partitioning enables
simply dropping an old partition instead of issuing costly row-level deletes.

 Query patterns target subsets: If most queries only need a specific slice of the data (such as one
region, customer group, or time period), partitioning ensures only those partitions are accessed.

 Operational management: Partitioning makes it easier to rebuild or reorganize data incrementally,
reducing downtime and improving flexibility in managing very large datasets.

However, it’s important to design partitioning schemes thoughtfully. Over-partitioning creating too many
small partitions also introduce overhead in planning and metadata management, while a poor choice of
partition key can lead to uneven data distribution, causing certain partitions to become hot spots. Thus,
partitioning should follow a careful analysis of data growth patterns and query access behaviours.

Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 34 of 48 fast.fujitsu.com

6.9. Limiting application connections

One of the most overlooked yet critical aspects of Fujitsu Enterprise Postgres/PostgreSQL performance
tuning is managing the number of concurrent client connections. Many developers mistakenly believe
that simply opening more connections will increase throughput. However, Fujitsu Enterprise
Postgres/PostgreSQL handles each connection by spawning a separate operating system process. Each
process consumes memory for session state, shared buffer access, and various internal structures. As the
connection count rises, total memory use grows linearly, often leading to considerable RAM demands.
Meanwhile, the CPU must continually switch among these processes, amplifying context switching
overhead and lock contention on shared resources.

Fujitsu Enterprise Postgres/PostgreSQL is designed to be highly efficient with a moderate number of
active connections typically a few dozen to a few hundred, depending on workload and hardware.
Beyond this, adding more connections generally results in diminishing returns and can quickly tip into
outright performance degradation. For example, if hundreds of idle or short-lived connections are
competing for shared buffers or transaction visibility checks, the system may spend more time
coordinating these connections than executing queries. A common symptom of excessive connections
error:

FATAL: sorry, too many clients already

which appears when the configured max_connections limit is exceeded. Even before hitting this hard
cap, excessive connections increase memory and CPU usage due to increased context switching and
lock acquisitions. The result is slower queries and unpredictable response times, hurting both throughput
and user experience.

To prevent this, it is best practice to limit direct application connections and instead route them through
a connection pooler like pgBouncer or Pgpool-II. These tools maintain a small, controlled set of active
connections to Fujitsu Enterprise Postgres/PostgreSQL, lending them to applications on demand. This
drastically cuts memory and CPU overhead, ensuring the database operates within optimal bounds.
Additionally, Fujitsu Enterprise Postgres/PostgreSQL’s max_connections parameter and per-role
connection limits provide guardrails, preventing runaway scenarios where one application overwhelms
the system.

By carefully managing concurrency through pooling and sensible limits, organizations can keep Fujitsu
Enterprise Postgres/PostgreSQL fast, stable, and scalable even under heavy load.

Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 35 of 48 fast.fujitsu.com

6.10. pg­stat­ statements

pg_stat_statements is one of the most useful PostgreSQL extensions for monitoring and improving
database performance. It tracks all SQL statements that run on your database and keeps detailed
statistics, such as how many times each query was executed, the total and average time taken, the
number of rows returned, and how much data was read from memory or disk. Unlike basic logging,
pg_stat_statements groups together similar queries ignoring different constant values so you can see
the true impact of query patterns, not just individual calls.

This makes it a powerful tool for finding slow or frequently executed queries that might need
optimization. For example, you could discover that a simple SELECT is being called millions of times
every day, or that a monthly report query is causing heavy CPU and I/O load whenever it runs. With this
information, you can decide where to add indexes, rewrite inefficient SQL, or introduce caching in your
application.

Because pg_stat_statements keeps track over time, it also helps you spot performance regressions
after deploying new code or shows evidence of improvement after tuning. In short, it turns tuning from
guesswork into a data-driven process.

6.11. Use views or materialized views for complex queries

Views and materialized views help simplify complex SQL and make both development and performance
management easier. A view is like a saved SQL query that you can call by name, which means you can
centralize complicated joins, filters, or calculations in one place. This avoids repeating the same long SQL
in many parts of your application, making code easier to maintain.

A materialized view goes further by storing the result of a query on disk. Instead of calculating
everything fresh each time, the database reads precomputed results, which can be much faster.
Materialized views are great for reports and dashboards that analyze large data sets and don’t need real-
time updates they can be refreshed on a schedule off-peak hour.

Both views and materialized views help the database optimizer understand your data better and break
big queries into smaller, more manageable pieces. This can reduce CPU, memory, and I/O load, leading
to more stable performance, especially in systems doing heavy analytics.

6.12. Equijoins to improve SQL efficiency

Equijoins are joins that match rows using simple equal conditions, like table1.id = table2.id. They
are a key part of relational databases and are highly optimized by PostgreSQL. With equijoins, the
database can use efficient algorithms like nested loops, hash joins, or merge joins and take
advantage of indexes to quickly find matching rows. This makes queries run faster and scale better.

By contrast, joins that use inequality conditions (like <, >, or !=) or functions on join columns usually
prevent the database from using indexes, forcing it to check every possible row combination. This is
much slower, especially on large tables.

To keep queries efficient, design your tables and queries so they use equijoins with matching data types.
This allows the planner to pick the fastest join method and minimizes memory and disk use. It’s one of
the most important habits for writing high-performance SQL.

Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 36 of 48 fast.fujitsu.com

6.13. Avoid implicit type conversion

Implicit type conversion happens when PostgreSQL automatically changes one data type to another so
it can compare or join them. For example, comparing a TEXT column to a NUMBER, or a VARCHAR to an
INTEGER, makes PostgreSQL convert values on the fly. This usually prevents it from using indexes for
quick lookups, forcing it instead to do a full table scan, which is much slower.

These silent conversions also use extra CPU because each row needs to be converted before it can be
compared. Sometimes they even cause unexpected errors if the conversion fails, like when trying to turn
a non-numeric string into a NUMBER.

To avoid these problems, always make sure you’re comparing the same data types. Store data in the
right types from the start and explicitly cast values if needed. This helps the planner use indexes
properly, speeds up queries, and avoids surprises in your application logic.

6.14. Use parallel query scans to improve query performance

PostgreSQL supports parallel query execution, which means it can split certain operations like large
table scans, aggregations, and joins across multiple CPU cores at the same time. This is a huge
performance boost for large datasets or complex analytical queries that would otherwise take a long
time.

When a parallel plan is chosen, PostgreSQL creates multiple worker processes. Each one handles part of
the job, like scanning a different section of a table. This cuts down the total query time by spreading the
work across the server’s cores. Parallelism also works for things like joins and aggregates, combining
partial results at the end.

To make use of this feature, you need to adjust settings like
max_parallel_workers_per_gather and make sure your hardware and workload can benefit. Also,
some queries can’t be parallelized for example, ones with LIMIT or volatile functions.

Using parallel queries can turn slow reports that take minutes into jobs that finish in seconds, fully using
modern multi-core CPUs and improving the speed of data-heavy applications.

Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 37 of 48 fast.fujitsu.com

7. Tune database parameters

Tuning database parameters is one of the most critical tasks in achieving reliable, predictable, and high-
performing PostgreSQL systems. The default configuration values that ship with PostgreSQL are
intentionally conservative, designed to work on a wide range of hardware including small virtual
machines or legacy systems. While this ensures safety out of the box, it means these defaults are almost
always suboptimal for production workloads, especially on modern servers with large amounts of
memory, multi-core CPUs, and fast storage.

Effective tuning involves adjusting the configuration parameters (found in postgresql.conf) so that
PostgreSQL makes the best use of available hardware resources while matching the nature of your
workload.

7.1. max­connections

The max_connections parameter sets the maximum number of concurrent connections that can be
established to the PostgreSQL database. Each client connection consumes server resources because
PostgreSQL creates a dedicated backend process for every user session. This backend handles all
communication, query execution, and transaction management for that client. Once the user
disconnects or logs off, the associated backend process is terminated, freeing up those resources.

However, maintaining many active backend processes simultaneously can significantly increase memory
consumption and CPU overhead, due to context switching and process management. To address this,
many production environments use connection pooling tools like PgBouncer or Pgpool-II. These tools
reduce the overhead on the main PostgreSQL postmaster process by reusing existing backend
processes, serving multiple client requests through a smaller, controlled pool of actual database
connections. This keeps resource usage stable and allows PostgreSQL to handle high application loads
efficiently.

7.2. shared­buffers

The shared_buffers parameter defines the amount of memory PostgreSQL sets aside for its own
buffer cache, where it stores frequently accessed data pages. Each buffer is typically 8KB in size, and the
total shared buffers are determined by multiplying this size by the number of buffers set. PostgreSQL
requires at least 16 buffers and often recommends having at least twice the max_connections value to
ensure there are enough buffers to handle concurrent operations.

As a rule of thumb, a setting of about 25% of system RAM provides a good starting point. However,
PostgreSQL also relies heavily on the operating system’s file cache, so sometimes it’s beneficial to keep
shared_buffers relatively modest and let the OS handle most of the caching. Tuning this parameter is
critical because too small a setting can cause frequent disk reads, while too large a setting may reduce
memory available for the OS cache, possibly hurting overall I/O performance.

Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 38 of 48 fast.fujitsu.com

7.3. work­mem

The work_mem parameter specifies the amount of memory allocated for internal operations like sorting
and building hash tables before the system falls back to using temporary disk files. This value is set in
kilobytes, with a minimum allowed value of 64KB. Increasing work_mem can significantly improve the
speed of operations like ORDER BY, DISTINCT, and JOIN operations that rely on sorting or hashing. It’s
important to remember that work_mem is allocated per sort or hash operation, and multiple such
operations can occur simultaneously in a single query. Therefore, very high values could consume
excessive memory if many operations run in parallel.

A key advantage of work_mem is that it can also be adjusted on a per-session basis, allowing resource-
intensive queries to temporarily use more memory without affecting global settings.

7.4. maintenance­work­mem

The maintenance_work_mem parameter sets the maximum amount of memory PostgreSQL will use for
maintenance operations such as VACUUM, CREATE INDEX, and ALTER TABLE ADD FOREIGN KEY. Like
work_mem, it is specified in kilobytes, with a minimum of 1024KB. Allocating more memory to this
setting allows these operations to handle larger chunks of data in memory, reducing the need to write
temporary data to disk and speeding up tasks like indexing or vacuuming. This is especially helpful
during database restores or heavy maintenance periods, where minimizing disk I/O can save significant
time.

A common recommendation is to set maintenance_work_mem to about 1/20th of total RAM (Total RAM
× 0.05). However, this must be balanced with the autovacuum_max_workers setting because each
autovacuum worker can use up to this amount of memory. Increasing the number of autovacuum
workers may require reducing maintenance_work_mem to avoid overcommitting system memory.
Properly tuning these together ensures efficient maintenance without risking memory exhaustion.

7.5. effective­cache­size

The effective_cache_size parameter gives PostgreSQL’s query planner an estimate of how much
memory is available for caching data considering both the operating system’s file system cache and
PostgreSQL’s own shared_buffers. Unlike shared_buffers, this setting doesn’t allocate or reserve
any memory; it simply acts as a guideline to help the planner decide whether index scans or sequential
scans are more likely to be efficient. A higher effective_cache_size value makes the planner more
inclined to use index scans, under the assumption that more data is already cached in memory.

A common practice is to set effective_cache_size to about 70% to 75% of total system RAM. This
reflects the typical amount of memory that can be used for caching data files, balancing room for other
system processes. For more cautious configurations, setting it closer to 50% is also reasonable. To fine-
tune this parameter, it’s helpful to monitor operating system memory usage and see how much RAM is
consistently available for caching. By providing an accurate estimate, you enable the planner to make
smarter choices that can significantly improve query performance.

Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 39 of 48 fast.fujitsu.com

7.6. wal­ buffers

The wal_buffers parameter determines how much shared memory PostgreSQL sets aside to
temporarily store write-ahead log (WAL) data before it is written to disk. Each buffer is typically 8KB in
size. This memory needs to be sufficient to hold the typical volume of WAL data produced by a batch of
transactions. By default, setting wal_buffers to -1 enables automatic tuning, which calculates the
value as approximately 1/32nd of shared_buffers, capped at 16 MB. This usually strikes a good
balance for most systems.

Because WAL data is flushed to disk on every transaction commit, there is generally little benefit in
setting this parameter extremely high. Its main purpose is to avoid very frequent small writes by
buffering enough WAL data in memory to allow more efficient I/O. While the default auto-tuned
behaviour works well in most cases, some systems have shown improved performance when explicitly
setting wal_buffers to around 32 MB. However, increasing it beyond that typically yields no further
advantage. Proper tuning ensures smoother transaction logging and can help reduce I/O overhead
under write-intensive workloads.

7.7. max­wal­ size

The max_wal_size parameter defines the maximum size that the write-ahead log (WAL) is allowed to
grow between automatic checkpoints. This acts as a soft limit meaning PostgreSQL tries to trigger a
checkpoint when this size is reached, but under certain conditions, such as during heavy workloads,
failed archive_command operations, or high wal_keep_size settings, the WAL size can temporarily
exceed this threshold. If no unit is specified, max_wal_size is interpreted in megabytes, with a default
value of 1 GB.

Larger values for max_wal_size reduce the frequency of checkpoints, which helps minimize I/O spikes
caused by flushing dirty pages to disk. However, this also means more WAL must be processed during
crash recovery, potentially extending recovery time after a failure. The parameter can only be configured
in the postgresql.conf file or set on the server’s command line at startup.

A practical way to tune this parameter is to calculate it based on the WAL generation rate and the
checkpoint interval. For example, using SQL functions to check WAL positions:

postgres=# SELECT pg_current_xlog_insert_location();
 3D/B4020A58
(after waiting for next checkpoint)
postgres=# SELECT pg_current_xlog_insert_location();
 3E/2203E0F8
postgres=# SELECT pg_xlog_location_diff('3E/2203E0F8', '3D/B4020A58');
 1845614240

This shows approximately 1.8 GB of WAL generated between checkpoints. A common practice is to set
max_wal_size to about three times this amount around 6 GB in this case which allows room for
multiple checkpoints and spread I/O more evenly. This “3×” factor accounts for PostgreSQL’s behaviour
of overlapping WAL usage across two to three checkpoint cycles.

Proper tuning of max_wal_size ensures a balance between reducing checkpoint frequency (improving
steady-state performance) and maintaining acceptable crash recovery times.

Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 40 of 48 fast.fujitsu.com

7.8. checkpoint­timeout

checkpoint_timeout controls the maximum time, in seconds, between automatic checkpoints. The
range is 30 to 3600 seconds, with a default of 300 seconds (5 minutes). Longer intervals mean fewer
checkpoints, reducing I/O overhead from writing dirty pages to disk.

However, this also means that crash recovery might take longer, since more WAL must be processed to
bring the database back to a consistent state. Balancing this setting is crucial to achieving predictable
write performance while keeping recovery times within acceptable limits.

7.9. max­ parallel­workers­ per­ gather

max_parallel_workers_per_gather sets the maximum number of parallel worker processes that can
be used for a single parallel operation, like a sequential scan or aggregation. This parameter enables
PostgreSQL to use multiple CPU cores for a single query, potentially speeding up large table scans, joins,
and sorts.

Increasing this value can significantly reduce query execution time on multi-core systems but also
increases CPU usage. It’s essential to find a balance to avoid starving other queries or background tasks.

7.10. random­ page­cost

The random_page_cost parameter tells PostgreSQL’s planner how much more expensive it is to
perform a random read from disk compared to a sequential read. By default, it is set to 4.0, which
assumes that reading a random page is four times costlier than reading sequential pages. This default
reflects older assumptions based on traditional spinning disks, where sequential reads were dramatically
faster than random access.

However, for most modern systems especially those using SSDs or systems where the database largely
fits in memory this default is typically too high. A high random_page_cost discourages the planner
from choosing index scans in favour of sequential scans, even when an index could be faster. Lowering
this value to around 2.5 or even 1.5 makes the planner more willing to use index scans, improving query
performance on workloads where indexed lookups are advantageous. If your entire database fits
comfortably in memory, you might even set random_page_cost equal to seq_page_cost, effectively
telling PostgreSQL there is no meaningful penalty for random access.

Tuning random_page_cost based on your hardware characteristics using lower values for SSDs or
memory-resident databases helps to generate more accurate execution plans and can significantly
boost performance for index-heavy queries.

7.11. huge­ pages

The huge_pages parameter controls whether PostgreSQL uses large memory pages at the operating
system level. Supported only on Linux, huge pages reduce the number of entries required in the page
table, which can decrease CPU overhead for memory management.

Valid settings are tried (the default, PostgreSQL will use huge pages if possible), on (require them), and
off (disable them). This can improve performance for databases with very large memory allocations by
cutting down on TLB (translation lookaside buffer) misses and improving memory mapping efficiency.

Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 41 of 48 fast.fujitsu.com

7.12. bgwriter­delay

The bgwriter_delay parameter sets the interval at which the background writer wakes up to check for
dirty buffers that need flushing to disk. By default, this is set to 200 milliseconds, which is adequate for
light to moderate workloads. However, on systems experiencing high volumes of write activity such as
OLTP environments or large-scale batch processing this delay can result in too many dirty pages
building up in memory. To reduce pressure on backend processes and avoid performance spikes, it's
advisable to decrease this value. On write-heavy systems, reducing bgwriter_delay to around 100
milliseconds can significantly improve buffer turnover. For extremely high-frequency systems where
writes are continuous and intense, lowering it even further to 10 milliseconds may be beneficial. It’s
important not to set it below 10 milliseconds to avoid excessive CPU usage caused by the background
writer waking up too frequently.

7.13. bgwriter­ lru­maxpages

The bgwriter_lru_maxpages parameter defines the maximum number of dirty buffers the
background writer can write to disk in a single pass. With a default of only 100 buffers, PostgreSQL takes
a very cautious approach, which may not keep up with demand in more active environments. If your
system performs many inserts or updates, especially across many clients, this default can lead to
backend processes being forced to write dirty buffers themselves causing latency. A commonly
recommended value in such scenarios is 1000, which enables the background writer to flush a much
larger portion of the buffer pool each round. This helps maintain a healthy pool of clean buffers and
improves overall system responsiveness under load.

7.14. bgwriter­ lru­multiplier

The bgwriter_lru_multiplier controls how many buffers are targeted for cleaning in each round of
the background writer, relative to the number of recently used buffers. The default multiplier of 2 works
well in general-purpose systems. However, in systems where write traffic is high and buffers are reused
quickly, this setting may not be aggressive enough. Increasing it to 3 or even 4 allows the background
writer to be more proactive in cleaning buffers. This reduces the likelihood that backend processes
encounter dirty pages that must be flushed before reuse, thereby improving write throughput and
reducing contention under heavy loads.

7.15. bgwriter­flush­after

The bgwriter_flush_after parameter defines how much data the background writer should
accumulate before flushing it to disk. This setting helps reduce the frequency of disk flushes and allows
writes to be batched, which is beneficial for performance, particularly on SSDs or write-sensitive storage.
By default, this is typically set to 512kB. On high-performance storage systems, increasing this to 1MB or
more (not more than 2MB) can provide better throughput by reducing I/O fragmentation. However, this
value should be tuned carefully, as larger values may introduce latency in write persistence if too much
data is held in memory before being flushed.

Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 42 of 48 fast.fujitsu.com

7.16. backend­flush­after

Similar to the background writer’s flush behaviour, backend_flush_after controls how much dirty data
a backend process should accumulate before issuing a flush. The default is also around 512kB. On
systems with aggressive write workloads, particularly where many backend processes are running
concurrently, increasing this value to 1MB or more (not more than 2MB) can reduce the total number of
flush operations and improve I/O efficiency. However, if durability requirements are strict (e.g., in financial
systems), the value should not be set too high, to avoid delaying critical data persistence.

7.17. checkpoint­flush­after

The checkpoint_flush_after parameter governs how much data should be written during a
checkpoint before it is flushed to disk. Its default value is typically 256kB. During a checkpoint, many
dirty buffers are written out in bulk, which can cause I/O bursts if not controlled. Raising this value to
1MB or more (not more than 2MB) allows more data to be grouped together before being flushed,
smoothing out disk activity and making checkpoints less disruptive. This is especially useful on systems
with modern SSDs or RAID arrays where sequential write performance is strong. However, on slower
disks, a lower value (default) may still be preferable to avoid long flush times.

Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 43 of 48 fast.fujitsu.com

8. Fujitsu Enterprise Postgres performance enhancement

Fujitsu Enterprise Postgres is an enterprise-grade distribution of PostgreSQL that includes a range of
performance enhancements designed to meet demanding workloads, reduce operational overhead, and
ensure predictable, scalable performance in large-scale environments. While it remains fully compatible
with the open-source PostgreSQL ecosystem, Fujitsu has added several unique capabilities and
optimizations that target some of the most common performance bottlenecks in high-concurrency and
mission-critical systems.

8.1. Global Meta Cache _GMC-

The Global Meta Cache (GMC) is a distinctive performance-enhancing feature of Fujitsu Enterprise
Postgres, designed to significantly reduce metadata lookup overhead across database operations. In a
typical PostgreSQL environment, each backend process maintains its own local cache of metadata such
as table definitions, index structures, column types, and permissions. While this works well for many
scenarios, it can lead to inefficiencies in environments with many concurrent connections. Each process
independently loads and manages this metadata, resulting in redundant memory usage and repeated
catalog lookups.

The GMC in Fujitsu Enterprise Postgres addresses this by centralizing and sharing metadata information
across all database sessions. Instead of every backend process building its own catalog cache, the GMC
maintains a globally accessible cache in shared memory. This approach allows all connections to quickly
reference a single, consistent set of metadata, eliminating redundant lookups and reducing the CPU and
memory cost associated with maintaining many individual caches.

From a performance optimization perspective, GMC delivers two primary benefits:

1. Reduced metadata overhead: By consolidating metadata management, GMC cuts down on the
repeated system catalog scans and cache population that occur in high-concurrency environments.
This lowers CPU usage and accelerates operations that involve metadata validation, such as
preparing queries or planning execution paths.

2. Faster query processing: With a globally shared metadata cache, GMC allows backend processes to
start executing queries more quickly, as they can bypass the step of reloading or validating metadata
already known to be current and consistent. This is particularly advantageous in workloads with
short-lived connections or microservice architectures, where new sessions are frequently initiated.

Additionally, GMC contributes to more predictable performance by reducing fluctuations in latency
caused by catalog lookups and local cache refreshes. For systems with thousands of concurrent
connections, or where applications frequently open and close sessions, this optimization ensures
smoother throughput and makes better use of shared memory resources.

Process 3Process 2Process 1

Meta cache A

Meta cache B

Meta cache C Meta cache D Meta cache D

Meta cache A Meta cache A

Meta cache B Meta cache C

Shared memory

Shared bu�fers

WAL bu�fers

...others

Without Global Meta Cache

Shared memory

Global Meta
Cache area

Meta cache D

Meta cache A

Meta cache B

Meta cache C Process 3

Process 2

Process 1

Meta cache
header

Meta cache
header

Meta cache
header

Shared bu�fers

WAL bu�fers

...others

With Global Meta Cache

Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 44 of 48 fast.fujitsu.com

In essence, GMC transforms how metadata is managed in Fujitsu Enterprise Postgres, turning what is
traditionally a per-process overhead into a streamlined, shared operation that boosts scalability, lowers
resource consumption, and speeds up query processing directly translating into improved overall
database performance.

8.2. Parallel scan in Fujitsu Enterprise Postgres

Parallel scan is a key feature in Fujitsu Enterprise Postgres that delivers high-speed query processing and
stable database operation by making more intelligent use of system resources. While open-source
PostgreSQL also supports parallel execution breaking up table scans, joins, and aggregates across
multiple CPU cores it does so with a fixed degree of parallelism based solely on configuration
parameters. This approach does not take actual system load into account, which can lead to inefficient
resource use. For example, if the database is already under heavy CPU load, initiating more parallel
workers can cause CPU contention, increasing context switching and slowing down overall performance.

Fujitsu Enterprise Postgres enhances this by adding dynamic control over parallel execution. In addition
to supporting standard parallel query plans, Fujitsu Enterprise Postgres monitors current CPU utilization
and adjusts the degree of parallelism on the fly. When CPU usage is high, Fujitsu Enterprise Postgres
automatically reduces the number of parallel workers to prevent oversaturation of processor resources,
ensuring that other critical workloads are not starved of CPU time. Conversely, when CPU load is low,
Fujitsu Enterprise Postgres increases the degree of parallelism, maximizing the use of available cores to
complete queries faster.

This dynamic tuning provides several practical benefits. It helps maintain consistent and stable
performance, avoiding the unpredictable slowdowns that can occur when too many processes compete
for limited CPU capacity. It also ensures efficient batch processing and scheduled aggregations, as the
system intelligently ramps up parallelism during quieter periods, completing large analytical or
maintenance tasks more quickly.

Overall, by integrating CPU-aware parallel control, Fujitsu Enterprise Postgres goes beyond traditional
parallel execution models. It achieves faster processing while preventing resource contention, making it
well-suited for mixed workloads where both transactional and reporting operations must coexist without
degrading each other’s performance.

Time

DOP 2 DOP 4 DOP 4

Q
ue

ry
 1

Q
ue

ry
 2

Starts with DOP 2, due to CPU
utilization and to avoid overloading

As CPU utilization
decreases, DOP
increases

Uses DOP 4, regardless
of CPU utilization

C
PU

ut
ili

za
tio

n

CPU contention causes waiting,
resulting in poor performance

E��icient use of CPU
increases performance

Both examples with 6 CPU cores

DOP 4DOP 4

Parallel scan in Fujitsu Enterprise Postgres

DOP: Degree of parallelism

Q
ue

ry
 1

Q
ue

ry
 2

C
PU

ut
ili

za
tio

n

Parallel scan in OSS PostgreSQL

Time

Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 45 of 48 fast.fujitsu.com

8.3. High:Speed Data Load in Fujitsu Enterprise Postgres

High-Speed Data Load is a specialized feature in Fujitsu Enterprise Postgres designed to accelerate bulk
data loading by intelligently leveraging multi-core systems. Unlike traditional bulk loading processes,
which often rely on a single thread or require extensive manual tuning to parallelize, this feature
automatically distributes the workload across multiple CPU cores to maximize throughput without
requiring pre-configuration.

Fujitsu’s High-Speed Data Load enhances the standard PostgreSQL COPY command by executing it in
parallel. It dynamically launches as many parallel workers as the available CPU cores and system load
will allow. Each worker simultaneously performs data conversion, table population, and index creation, all
directly from the input file. This means the data loading pipeline is fully parallelized, dramatically
reducing total load times compared to single-threaded approaches.

For mission-critical environments where large datasets need to be ingested quickly such as during ETL
processes, database migrations, or initial population of new systems this feature ensures that bulk data
operations make optimal use of available hardware. By automatically scaling the number of parallel
workers according to system resources, it avoids the need for DBAs to manually fine-tune load
parameters in advance.

This approach not only speeds up data loading but also maintains balanced system performance by
adapting to the current CPU capacity. As a result, Fujitsu Enterprise Postgres’s High-Speed Data Load is
particularly well-suited for modern multi-core servers, enabling enterprises to ingest large volumes of
data rapidly while preserving headroom for other critical database operations.

Lo
ad

 t
im

e
(>

5M
 re

co
rd

s)

High:Speed
Data Load

PostgreSQL
bulk load
extension

PostgreSQL
COPY

command

Leading
proprietary
DB vendor

1.9x 1.9x

3x

4x
3.7x

17.3xWithout index

With index

Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 46 of 48 fast.fujitsu.com

9. Best practices for inserting large amounts of data

Efficiently inserting large volumes of data into PostgreSQL or Fujitsu Enterprise Postgres requires careful
attention to transaction handling, write-ahead logging (WAL), indexing, and background processes.
Following best practices during bulk data operations can dramatically reduce load times, minimize I/O
overhead, and ensure a smooth ingestion process without compromising system stability.

 When using multiple INSERT statements, always wrap them within an explicit transaction using BEGIN
and COMMIT. This reduces transaction overhead, as each individual INSERT no longer needs to
commit separately. However, for large-scale bulk loading, it is far more efficient to use the COPY
command, which loads all rows in a single operation. COPY bypasses many of the overheads
associated with row-by-row inserts and is optimized for speed.

 If the COPY command cannot be used, due to application constraints it can still help to use prepared
statements. By preparing the INSERT statement once and executing it multiple times with different
values, you reduce the cost of repeated parsing and planning, which improves performance for high-
volume inserts.

 For newly created tables, the most optimal strategy is to first create the table, then bulk load data
using COPY, and only afterward create any indexes. This avoids the overhead of maintaining indexes
during the data load. Fujitsu Enterprise Postgres goes a step further with its pgx_loader utility, which
is specifically designed for high-performance data ingestion and has been benchmarked to be 3 to 4
times faster than the standard COPY command.

 To further accelerate data loading, consider temporarily dropping foreign key constraints and re-
adding them after the load is complete. This eliminates the costly validation of foreign keys on each
row insert. Similarly, increasing configuration parameters such as maintenance_work_mem and
max_wal_size during the load phase can improve performance by allowing more in-memory
processing and reducing the frequency of checkpoints.

 For bulk loads that don’t require immediate durability or replication consistency, consider disabling
WAL archiving and streaming replication during the operation. This avoids the extra I/O overhead of
transmitting and storing WAL data. Additionally, disabling triggers and autovacuum processes if safe
to do so can further minimize interference during the load.

By combining these practices, database administrators can ensure that large data loads are completed
efficiently, with minimal impact on overall system performance.

Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 47 of 48 fast.fujitsu.com

10. Conclusion

Tuning Fujitsu Enterprise Postgres or PostgreSQL is not about changing a few configuration settings and
hoping for better performance. It’s a structured, end-to-end process that starts with understanding your
system’s hardware and operating environment, moves through optimizing application SQL, and finally
fine-tunes the database engine itself.

This guide has shown that real performance comes from addressing the right layer at the right time.
Before adjusting any database parameters, it’s critical to ensure the operating system is healthy and your
application queries are efficient. Only then will changes to memory allocation, WAL behaviour,
autovacuum settings, or parallelism truly deliver lasting improvements.

By following the best practices and step-by-step approach outlined in this guide, you’ll not only boost
performance you’ll also build a PostgreSQL or Fujitsu Enterprise Postgres environment that is stable,
scalable, and ready to meet future demands. With the right tools, careful observation, and a clear
methodology, performance tuning becomes a manageable and impactful part of database
administration.

Best practices for Fujitsu Enterprise Postgres#PostgreSQL performance optimization

Page 48 of 48 fast.fujitsu.com

Fujitsu Enterprise Postgres is the enhanced version of

PostgreSQL, for enterprises seeking a more robust, secure,

and fully supported edition for business-critical applications

Contact
Fujitsu Limited
Email: enterprisepostgresql@fujitsu.com
Website: fast.fujitsu.com

2025-10-29 WW EN

Copyright 2025 Fujitsu Limited. Fujitsu, the Fujitsu logo and Fujitsu brand names are trademarks or registered trademarks of
Fujitsu Limited in Japan and other countries. Other company, product and service names may be trademarks or registered
trademarks of their respective owners. All rights reserved. No part of this document may be reproduced, stored or transmitted
in any form without prior written permission of Fujitsu Australia Software Technology. Fujitsu Australia Software Technology
endeavors to ensure the information in this document is correct and fairly stated, but does not accept liability for any errors or
omissions

https://fast.fujitsu.com/enhanced-security-for-enterprises
https://fast.fujitsu.com/enhanced-security-for-enterprises
https://fast.fujitsu.com/

	1. Executive summary
	2. Introduction
	2.1. What this guide covers

	3. Fujitsu Enterprise Postgres/PostgreSQL architecture diagram
	3.1. Memory architecture of Fujitsu Enterprise Postgres
	3.1.1. Shared memory area
	3.1.2. Local memory area

	4. Tuning technique
	4.1. Introduction to Fujitsu Enterprise Postgres/PostgreSQL tuning approach
	4.1.1. Start with the operating system
	4.1.2. Check the application SQLs
	4.1.3. Tune database server configuration

	5. Operating system tuning
	5.1. Kernel parameters
	5.1.1. Shared memory and semaphores: How Fujitsu Enterprise Postgres/PostgreSQL uses them
	5.1.2. System limits and what happens when you hit them
	5.1.3. How do these parameters matter?
	5.1.4. POSIX vs System V
	5.1.5. Why tune kernel parameters?
	5.1.6. getconf PAGE_SIZE
	5.1.7. vm.dirty_bytes
	5.1.8. vm.dirty_background_bytes
	5.1.9. vm.dirty_ratio
	5.1.10. vm.dirty_background_ratio
	5.1.11. vm.swappiness
	5.1.12. vm.zone_reclaim_mode
	5.1.13. vm.overcommit_memory
	5.1.14. vm.overcommit_ratio

	5.2. Device configuration
	5.2.1. Scheduler
	5.2.2. Read ahead

	5.3. Mount point options in Linux for databases
	5.3.1. noatime
	5.3.2. discard
	5.3.3. nobarrier

	5.4. Redundant Array of Independent Disks (RAID)
	5.4.1. Less Desirable RAID Levels (Bad) - RAID 5, RAID 6 & RAID 0
	5.4.2. Better RAID Options (Good) - RAID 1
	5.4.3. Optimal RAID for Databases (Ideal) - RAID 10 (RAID 1+0)

	5.5. File systems
	5.5.1. EXT2
	5.5.2. EXT3
	5.5.3. EXT4
	5.5.4. XFS
	5.5.5. Remote file systems

	5.6. Disk separation
	5.6.1. pg_wal
	5.6.2. pg_stat_tmp
	5.6.3. WAL archive
	5.6.4. Temporary files

	6. Check application SQLs
	6.1. Why SQL tuning is Important
	6.2. Identifying and minimizing sequential scans
	6.3. Avoiding unused indexes
	6.4. Detecting duplicate indexes
	6.5. Avoid SELECT *
	6.6. Optimize IN vs EXISTS vs JOIN
	6.7. Leverage index-only scans
	6.8. Consider partitioning
	6.9. Limiting application connections
	6.10. pg_stat_statements
	6.11. Use views or materialized views for complex queries
	6.12. Equijoins to improve SQL efficiency
	6.13. Avoid implicit type conversion
	6.14. Use parallel query scans to improve query performance

	7. Tune database parameters
	7.1. max_connections
	7.2. shared_buffers
	7.3. work_mem
	7.4. maintenance_work_mem
	7.5. effective_cache_size
	7.6. wal_buffers
	7.7. max_wal_size
	7.8. checkpoint_timeout
	7.9. max_parallel_workers_per_gather
	7.10. random_page_cost
	7.11. huge_pages
	7.12. bgwriter_delay
	7.13. bgwriter_lru_maxpages
	7.14. bgwriter_lru_multiplier
	7.15. bgwriter_flush_after
	7.16. backend_flush_after
	7.17. checkpoint_flush_after

	8. Fujitsu Enterprise Postgres performance enhancement
	8.1. Global Meta Cache (GMC)
	8.2. Parallel scan in Fujitsu Enterprise Postgres
	8.3. High-Speed Data Load in Fujitsu Enterprise Postgres

	9. Best practices for inserting large amounts of data
	10. Conclusion

